Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T03:06:22.674Z Has data issue: false hasContentIssue false

4 - Particle motion in a sea of eddies

Published online by Cambridge University Press:  07 September 2009

Claudia Pasquero
Affiliation:
ESS University of California, Irvine, California, USA
Annalisa Bracco
Affiliation:
Physical Oceanography Dept., Woods Hole Oceanographic Institute, Woods Hole, Massachusetts, USA
Antonello Provenzale
Affiliation:
ISAC-CNR, Torino, CIMA, Savona, Italy
Jeffrey B. Weiss
Affiliation:
PAOS University of Colorado, Boulder, Colorado, USA
Annalisa Griffa
Affiliation:
University of Miami
A. D. Kirwan, Jr.
Affiliation:
University of Delaware
Arthur J. Mariano
Affiliation:
University of Miami
Tamay Özgökmen
Affiliation:
University of Miami
H. Thomas Rossby
Affiliation:
University of Rhode Island
Get access

Summary

Abstract

As more high-resolution observations become available, our view of ocean mesoscale turbulence more closely becomes that of a “sea of eddies.” The presence of the coherent vortices significantly affects the dynamics and the statistical properties of mesoscale flows, with important consequences on tracer dispersion and ocean stirring and mixing processes. Here we review some of the properties of particle transport in vortex-dominated flows, concentrating on the statistical properties induced by the presence of an ensemble of vortices. We discuss a possible parameterization of particle dispersion in vortex-dominated flows, adopting the view that ocean mesoscale turbulence is a two-component fluid which includes intense, localized vortical structures with non-local effects immersed in a Kolmogorovian, low-energy turbulent background which has mostly local effects. Finally, we report on some recent results regarding the role of coherent mesoscale eddies in marine ecosystem functioning, which is related to the effects that vortices have on nutrient supply.

Introduction

The ocean transports heat, salt, momentum and vorticity, nutrients and pollutants, and many other material and dynamical quantities across its vast spaces. Some of these transport processes are at the heart of the mechanisms of climate variability and of marine ecosystem functioning. In addition, a large portion of the available data on ocean dynamics are in the form of float and drifter trajectories. These provide a Lagrangian view of the ocean circulation which is not always easy to disentangle.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, E. R., 1998. The generation of plankton patchiness by turbulent stirring. Nature, 391, 577–80.CrossRefGoogle Scholar
Arhan, M., Mercier, H., and Lutjeharms, J. R. E., 1999. The disparate evolution of three Agulhas rings in the South Atlantic Ocean. J. Geophys. Res. Oceans, 104, 20987–1005.CrossRefGoogle Scholar
Artale, V., Boffetta, G., Celani, A., Cencini, M., and Vulpiani, A., 1997. Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 3162–71.CrossRefGoogle Scholar
Babiano, A., Boffetta, G., Provenzale, A., and Vulpiani, A., 1994. Chaotic advection in point vortex models and two-dimensional turbulence. Phys. Fluids, 6, 2465–74.CrossRefGoogle Scholar
Babiano, A., Cartwright, J. H. E., Piro, O., and Provenzale, A., 2000. Dynamics of small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett., 84, 5764–7.CrossRefGoogle Scholar
Bauer, S., Swenson, M. S., and Griffa, A., 2002. Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean. 2. Results. J. Geophys. Res. Ocean, 107, 3154–71.CrossRefGoogle Scholar
Benzi, R., Patarnello, S., and Santangelo, P., 1987. On the statistical properties of two-dimensional decaying turbulence. Europhys. Lett., 3, 811–18.CrossRefGoogle Scholar
Berloff, P. S. and McWilliams, J. C., 2002. Material transport in oceanic gyres. Part II: Hierarchy of stochastic models. J. Phys. Oceanogr., 32, 797–830.2.0.CO;2>CrossRefGoogle Scholar
Berloff, P. S., McWilliams, J. C., and Bracco, A., 2002. Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32, 764–96.2.0.CO;2>CrossRefGoogle Scholar
Beron-Vera, F. J., Olascoaga, M. J., and Brown, M. G., 2004. Passive tracer patchiness and particle trajectory stability in incompressible two-dimensional flows. Nonlinear Proc. Geoph., 11, 67–74.CrossRefGoogle Scholar
Bower, A. S., Armi, L., and Ambar, I., 1997. Lagrangian observations of Meddy formation during a mediterranean undercurrent seeding experiment. J. Phys. Oceanogr., 27, 2545–75.2.0.CO;2>CrossRefGoogle Scholar
Bracco, A., LaCasce, J., Pasquero, C., and Provenzale, A., 2000a. The velocity distribution of barotropic turbulence. Phys. Fluids, 12, 2478–88.CrossRefGoogle Scholar
Bracco, A., LaCasce, J. H., and Provenzale, A., 2000b. Velocity probability density functions for oceanic floats. J. Phys. Oceanogr., 30, 461–74.2.0.CO;2>CrossRefGoogle Scholar
Bracco, A., Provenzale, A., and Scheuring, I., 2000c. Mesoscale vortices and the paradox of the plankton. P. Roy. Soc. Lond. B, 267, 1795–1800.CrossRefGoogle Scholar
Bracco, A., Chassignet, E. P., Garraffo, Z. D., and Provenzale, A., 2003. Lagrangian velocity distributions in a high-resolution numerical simulation of the North-Atlantic. J. Atmos. Ocean. Tech., 20, 1212–20.2.0.CO;2>CrossRefGoogle Scholar
Bracco, A., Hardenberg, J., Provenzale, A., Weiss, J. B., and McWilliams, J. C., 2004. Dispersion and mixing in quasigeostrophic turbulence. Phys. Rev. Lett., 92, 084501.CrossRefGoogle ScholarPubMed
Brickman, D. and Smith, P. C., 2002. Lagrangian stochastic modeling in coastal oceanography. J. Atmos. Ocean. Tech., 19, 83–99.2.0.CO;2>CrossRefGoogle Scholar
Brown, M. G. and Smith, K. B., 1990. Are SOFAR float trajectories chaotic?J. Phys. Oceanog., 20, 139–49.2.0.CO;2>CrossRefGoogle Scholar
Colin de Verdiere, A., 1983. Lagrangian eddy statistics from surface drifters in the eastern North-Atlantic. J. Marine Res., 41, 375–98.CrossRefGoogle Scholar
Steur, L., Leeuwen, P. J., and Drijfhout, S. S., 2004. Tracer leakage from modeled Agulhas rings. J. Phys. Oceanog., 34, 1387–99.2.0.CO;2>CrossRefGoogle Scholar
Elhmaidi, D., Provenzale, A., and Babiano, A., 1993. Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech., 242, 655–700.Google Scholar
Falco, P., Griffa, A., Poulain, P. M., and Zambianchi, E., 2000. Transport properties in the Adriatic Sea as deduced from drifter data. J. Phys. Oceanogr., 30, 2055–71.2.0.CO;2>CrossRefGoogle Scholar
Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K., 1991. Role of eddy pumping in enhancing primary production in the Ocean. Nature, 352, 55–8.CrossRefGoogle Scholar
Farge, M. and Rabreau, G., 1988. Wavelet transform to detect and analyze coherent structures in two-dimensional turbulent flows. C. Acad. Sci. Paris Sér. II, 307, 1479–86.Google Scholar
Farge, M., Schneider, K., and Kevlahan, N., 1999. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids, 11, 2187–201.CrossRefGoogle Scholar
Flierl, G. R., 1987. Isolated eddy models in geophysics. Ann. Rev. Fluid Mechanics, 19, 493–530.CrossRefGoogle Scholar
Fratantoni, D. M., Johns, W. E., and Townsend, T. L., 1995. Rings of the North Brazil Current: their structure and behavior inferred from observations and a numerical simulation. J. Geophys. Res., 100, 10633–54.CrossRefGoogle Scholar
Garraffo, Z. D., Mariano, A. J., Griffa, A., Veneziani, C., and Chassignet, E. P., 2001. Lagrangian data in a high-resolution numerical simulation of the North Atlantic I. Comparison with in situ drifter data. J. Marine Syst., 29, 157–76.CrossRefGoogle Scholar
Garzoli, S. L., Richardson, P. L., Rae, C. M. D., Fratantoni, D. M., Goni, G. J., and Roubicek, A. J., 1999. Three Agulhas rings observed during the Benguela Current experiment. J. Geophys. Res. Oceans, 104, 20971–85.CrossRefGoogle Scholar
Goni, G. J., Garzoli, S. L., Roubicek, A. J., Olson, D. B., and Brown, O. B., 1997. Agulhas ring dynamics from TOPEX/POSEIDON satellite altimeter data. J. Marine Res., 55, 861–83.CrossRefGoogle Scholar
Griffa, A., 1996. Applications of stochastic particle models to oceanographic problems. In Stochastic Modelling in Physical Oceanography, ed. Adler, R. J., Müller, P., and Rozovskii, R. B.. Cambridge, MA: Birkhäuser Boston, 114–40.CrossRefGoogle Scholar
Griffa, A., Owens, K., Piterbarg, L., and Rozovskii, B., 1995. Estimates of turbulence parameters from Lagrangian data using a stochastic particle model. J. Marine Res., 53, 371–401.CrossRefGoogle Scholar
Hogg, N. G. and Owens, W. B., 1999. Direct measurement of the deep circulation within the Brazil Basin. Deep-sea Res. Part II, 46, 335–53.CrossRefGoogle Scholar
Hooker, S. B. and Brown, J. W., 1995. Warm-core ring dynamics derived from satellite imagery. J. Geophys. Res. Oceans, 99(C12), 25181–94.CrossRefGoogle Scholar
Isern-Fontanet, J., Garcia-Ladona, E., and Font, J., 2003. Identification of marine eddies from altimetric maps. J. Atmos. Ocean. Tech., 20, 772–8.2.0.CO;2>CrossRefGoogle Scholar
Jiménez, J., 1996. Algebraic probability density tails in decaying isotropic two-dimensional turbulence. J. Fluid Mech., 313, 223–40.CrossRefGoogle Scholar
Kot, M., 2001. Elements of Mathematical Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lévy, M., 2003. Mesoscale variability of phytoplankton and of new production: Impact of the large-scale nutrient distribution. J. Geophys. Res. Oceans, 108(C11), 3358.CrossRefGoogle Scholar
Lévy, M., Klein, P., and Tréguier, A. M., 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Marine Res., 59, 535–65.CrossRefGoogle Scholar
Mahadevan, A. and Archer, D., 2000. Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res. Oceans, 105, 1209–25.CrossRefGoogle Scholar
Mahadevan, A. and Campbell, J. W., 2002. Biogeochemical patchiness at the sea surface. Geophys. Res. Lett., 29, 1926.CrossRefGoogle Scholar
Mann, K. H. and Lazier, J. R. N., 1996. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans, 2nd edn. Cambridge, MA: Blackwell Science.Google Scholar
Martin, A. P., 2003. Phytoplankton patchiness: the role of lateral stirring and mixing. Progress in Oceanography, 57, 125.CrossRefGoogle Scholar
Martin, A. P. and Richards, K. J., 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-sea Res. Part II, 48, 757–73.CrossRefGoogle Scholar
Martin, A. P., Richards, K. J., Bracco, A., and Provenzale, A., 2002. Patchy productivity in the open ocean. Global Biogeochem. Cycles, 16, 1025.CrossRefGoogle Scholar
Maurizi, A., Griffa, A., Poulain, P. M., and Tampieri, F., 2004. Lagrangian turbulence in the Adriatic Sea as computed from drifter data: Effects of inhomogeneity and nonstationarity. J. Geophys. Res. Oceans, 109, C04010.CrossRefGoogle Scholar
McGillicuddy, D. J. and Robinson, A. R., 1997. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-sea Res. Part I, 44, 1427–50.CrossRefGoogle Scholar
McGillicuddy, D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W., Johnson, R., Dickeys, T., McNeil, J., Michaels, A. F., and Knap, A. H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263–6.CrossRefGoogle Scholar
McIntyre, M. E., 1989. On the Antarctic ozone hole. J. Atmos. Terr. Phys, 51, 29–43.CrossRefGoogle Scholar
McWilliams, J. C., 1985. Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165–82.CrossRefGoogle Scholar
McWilliams, J. C., 1990. The vortices of two-dimensional turbulence. J. Fluid Mech., 219, 361–85.CrossRefGoogle Scholar
McWilliams, J. C., Weiss, J. B., and Yavneh, I., 1999. The vortices of homogeneous geostrophic turbulence. J. Fluid Mech., 401, 1–26.CrossRefGoogle Scholar
Min, I. A., Mezic, I., Leonard, A., 1996. Levy stable distributions for velocity difference in systems of vortex elements. Phys. Fluids, 8, 1169–80.CrossRefGoogle Scholar
Mockett, C. R., 1998. Dispersion and reconstruction. In Astrophysical and Geophysical Flows as Dynamical System, WHOI Tech. Rep. WHOI-98-00.
Okubo, A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-sea Res., 17, 445–54.Google Scholar
Olson, D. B., 1991. Rings in the ocean. Annu. Rev. Earth. Planet. Sci., 19, 133–83.CrossRefGoogle Scholar
Olson, D. B. and Evans, R. H., 1986. Rings of the Agulhas Current. Deep-sea Res. Part A, 33, 27–42.CrossRefGoogle Scholar
Osborne, A. R., Kirwan, A. D., Provenzale, A., and Bergamasco, L., 1986. A search for chaotic behavior in large and mesoscale motions in the Pacific Ocean. Physica D, 23. 75–83.CrossRefGoogle Scholar
Osborne, A. R., Kirwan, A. D., Provenzale, A., and Bergamasco, L., 1989. Fractal drifter trajectories in the Kuroshio extension. Tellus, 41A, 416–35.CrossRefGoogle Scholar
Oschlies, A. and Garcon, V., 1999. An eddy-permitting coupled physical–biological model of the North Atlantic – 1. Sensitivity to advection numerics and mixed layer physics. Global Biogeochem. Cy., 13, 135–60.CrossRefGoogle Scholar
Pasquero, C., 2005. Differential eddy diffusion of biogeochemical tracers. Geophys. Res. Lett., 32, L17603, doi:10.1029/2005GL023662.CrossRefGoogle Scholar
Pasquero, C., A. Bracco, and A. Provenzale, 2004. Coherent vortices, Lagrangian particles and the marine ecosystem. In Shallow Flows, ed. Jirka, G. H. and Uijttewaal, W. S. J.. Leiden, NL: Balkema Publishers, 399–412.Google Scholar
Pasquero, C., Bracco, A., and Provenzale, A., 2005. Impact of the spatio-temporal variability of the nutrient flux on primary productivity in the ocean. J. Geophys. Res. – Oceans, 110, C07005, doi: 10.129/2004JC002738.CrossRefGoogle Scholar
Pasquero, C., Provenzale, A., and Babiano, A., 2001. Parameterization of dispersion in two-dimensional turbulence. J. Fluid Mech., 439, 279–303.CrossRefGoogle Scholar
Pasquero, C., Provenzale, A., and Weiss, J. B., 2002. Vortex statistics from Eulerian and Lagrangian time series. Phys. Rev. Lett., 89, 284501.CrossRefGoogle ScholarPubMed
Pedlosky, J., 1987. Geophysical Fluid Dynamics, 2nd edn. New York: Springer.CrossRefGoogle Scholar
Pickart, R. S., Smethie, W. M., Lazier, J. R. N., Jones, E. P., and Jenkins, W. J., 1996. Eddies of newly formed upper Labrador Sea water. J. Geophys. Res. Oceans, 101(C9), 20711–26.CrossRefGoogle Scholar
Poulain, P. M., 2001. Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. J. Marine Syst., 29, 3–32.CrossRefGoogle Scholar
Provenzale, A., 1999. Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech., 31, 55–93.CrossRefGoogle Scholar
Provenzale, A., A. R. Osborne, A. D. Kirwan, and L. Bergamasco, 1991. The study of fluid parcel trajectories in large-scale ocean flows. In Nonlinear Topics in Ocean Physics, ed. Osborne, A. R.. Amsterdam: Elsevier, 367–401.Google Scholar
Reynolds, A. M., 2002. On Lagrangian stochastic modelling of material transport in oceanic gyres. Physica D, 172, 124–38.CrossRefGoogle Scholar
Richardson, P. L., 1993. A census of eddies observed in North-Atlantic SOFAR float data. Progress in Oceanography, 31, 1–50.CrossRefGoogle Scholar
Richardson, P. L., Bower, A. S., and Zenk, W., 2000. A census of Meddies tracked by floats. Progress in Oceanography, 45, 209–50.CrossRefGoogle Scholar
Richardson, P. L. and Fratantoni, D. M., 1999. Float trajectories in the deep western boundary current and deep equatorial jets of the tropical Atlantic. Deep-sea Res. Part II, 46, 305–33.CrossRefGoogle Scholar
Richardson, P. L., Hufford, G. E., Limeburner, R., and Brown, W. S., 1994. North Brazil current retroflection eddies. J. Geophys. Res. Oceans, 99, 5081–93.CrossRefGoogle Scholar
Rodean, H. C., 1996. Stochastic Lagrangian models of turbulent diffusion. Meteor. Monographs, 26(48).CrossRefGoogle Scholar
Rupolo, V., Hua, B. L., Provenzale, A., and Artale, V., 1996. Lagrangian velocity spectra at 700 m in the western North Atlantic. J. Phys. Oceanogr., 26, 1591–1607.2.0.CO;2>CrossRefGoogle Scholar
Salmon, R., 1998. Lectures on Geophysical Fluid Dynamics. Oxford: Oxford University Press.Google Scholar
Sanderson, B. G. and Booth, D. A., 1991. The fractal dimension of drifter trajectories and estimates for horizontal eddy-diffusivity. Tellus, 43A, 334–49.CrossRefGoogle Scholar
Sawford, B. L., 1999. Rotation of trajectories in lagrangian stochastic models of turbulent dispersion. Bound.-Lay. Meteorol., 93, 411–24.CrossRefGoogle Scholar
Shapiro, G. I. and Meschanov, S. L., 1991. Distribution and spreading of Red-Sea water and salt lens formation in the Northwest Indian-Ocean. Deep-sea Res. Part A, 38, 21–34.CrossRefGoogle Scholar
Siegel, A. and Weiss, J. B., 1997. A wavelet-packet census algorithm for calculating vortex statistics. Phys. Fluids, 9, 1988–99.CrossRefGoogle Scholar
Siegel, D., McGillicuddy, D. J., and Fields, E. A., 1999. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J. Geophys. Res. Oceans, 104(C6), 13359–79.CrossRefGoogle Scholar
Smith, C. L., Richards, K. J., and Fasham, M. J. R., 1996. The impact of mesoscale eddies on plankton dynamics in the upper ocean. Deep-sea Res. II, 1807–32.CrossRefGoogle Scholar
Stammer, D., 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 1743–69.2.0.CO;2>CrossRefGoogle Scholar
Testor, P. and Gascard, J. C., 2003. Large-scale spreading of deep waters in the Western Mediterranean sea by submesoscale coherent eddies. J. Phys. Oceanogr., 33, 75–87.2.0.CO;2>CrossRefGoogle Scholar
Thomson, D. J., 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529–56.CrossRefGoogle Scholar
Veneziani, M., Griffa, A., Reynolds, A. M., and Mariano, A. J., 2004. Oceanic turbulence and stochastic models from subsurface Lagrangian data for the northwest Atlantic Ocean. J. Phys. Oceanog., 34, 1884–906.2.0.CO;2>CrossRefGoogle Scholar
Veneziani, M., Griffa, A., Garraffo, Z. D., and Chassignet, E. P., 2005. Lagrangian spin parameter and coherent structures from trajectories released in a high-resolution ocean model. J. Marine Res., 63, 753–88.CrossRefGoogle Scholar
Weatherly, G., Arhan, M., Mercier, H., and Smethie, W., 2002. Evidence of abyssal eddies in the Brazil Basin. J. Geophys. Res. Oceans, 107(C4), 3027.CrossRefGoogle Scholar
Weiss, J. B., 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273–94.CrossRefGoogle Scholar
Weiss, J. B., Provenzale, A., and McWilliams, J. C., 1998. Lagrangian dynamics in high-dimensional point-vortex systems. Phys. Fluids, 10, 1929–41.CrossRefGoogle Scholar
Williams, R. G. and M. J. Follows, 2003. Physical transport of nutrients and the maintenance of biological production. In Ocean biogeochemistry: The role of the ocean carbon cycle in global change, ed. Fasham, M.. Berlin: Springer-Verlag, 19–51.CrossRefGoogle Scholar
Zhang, H. M., Prater, M. D., and Rossby, T., 2001. Isopycnal Lagrangian statistics from the North Atlantic current RAFOS float observations. J. Geophys. Res. Oceans, 106, 13817–36.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×