Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T03:23:04.408Z Has data issue: false hasContentIssue false

9 - Observing turbulence regimes and Lagrangian dispersal properties in the oceans

Published online by Cambridge University Press:  07 September 2009

Volfango Rupolo
Affiliation:
ENEA, Roma, Italy
Annalisa Griffa
Affiliation:
University of Miami
A. D. Kirwan, Jr.
Affiliation:
University of Delaware
Arthur J. Mariano
Affiliation:
University of Miami
Tamay Özgökmen
Affiliation:
University of Miami
H. Thomas Rossby
Affiliation:
University of Rhode Island
Get access

Summary

Introduction

Lagrangian instruments have been widely used in the last few decades to sample basic ocean properties, even in remote areas of the globe. Since transport properties depend on Lagrangian scales, an integrated analysis of the Lagrangian trajectories observed sparsely in space and time is fundamental for the understanding of the ocean transport properties. This analysis, however, is complex, due to the non-homogeneous character of the mesoscale structures and the existence of different regimes of dispersion.

Nowadays, Lagrangian data, at different depths and in all world ocean basins, are available through the WOCE (2002) archive. The first information that can be extracted from such data is a map of the mean currents and of the eddy kinetic energy, that is typically computed using the binning technique, where the float velocities are averaged over small spatial subregions (bins). This approach, that considers Lagrangian instruments as moving current meters, has often been exploited in the past in order to achieve a better description of the global oceanic circulation (e.g. McNally et al., 1983; Richardson, 1983; Hofmann, 1985; Patterson, 1985; Davis, 1991a; Owens, 1991; Swenson and Niiler, 1996; Bauer et al., 1998; Fratantoni, 2001; Bower et al., 2002).

Lagrangian data have also been employed to study transport properties in the mesoscale range (e.g. Freeland et al., 1975; Riser and Rossby, 1983; Rossby et al., 1983; Colin de Verdière, 1983; Krauss and Böning, 1987; Figueroa and Olson, 1989; Zhang et al., 2001; Bauer et al., 2002).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babiano, A., Basdevant, C., Roy, P., and Sadourny, R., 1987. Single particle dispersion, Lagrangian structure function and Lagrangian energy spectrum in two-dimensional incompressible turbulence. J. of Mar. Res, 45, 107–31.CrossRefGoogle Scholar
Bauer, S., Swenson, M. S., Griffa, A., Mariano, A. J., and Owens, K., 1998. Eddy mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean.1. Methodology. J. of Geoph. Res., 103, 30855–71.CrossRefGoogle Scholar
Bauer, S., Swenson, M. S., Griffa, A., Mariano, A. J., and Owens, K., 2002. Eddy mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean. 2. Results. J. of Geoph. Res., 107, 3154, doi:10.1029/2001JC000613.CrossRefGoogle Scholar
Berloff, P., McWilliams, J., and Bracco, A., 2002a. Material transport in oceanic gyres. Part I: Phenomenology, J. of Phys. Oceanogr., 32, 797–830.2.0.CO;2>CrossRefGoogle Scholar
Berloff, P. and McWilliams, J., 2002b. Material transport in oceanic gyres. Part II: Hierarchy of stochastic models, J. of Phys. Oceanogr., 32, 797–830.2.0.CO;2>CrossRefGoogle Scholar
Berloff, P. and McWilliams, , 2003. Material transport in oceanic gyres. Part III: Randomized stochastic models, J. of Phys. Oceanogr., 33, 1416–45.2.0.CO;2>CrossRefGoogle Scholar
Borgas, M., Flesch, T., and Sawford, B., 1997. Turbulent dispersion with broken reflectional symmetry. J. of Fluid Mech., 332, 141–56.CrossRefGoogle Scholar
Bower, A. S., LeCann, B., Rossby, T., Zenk, W., Gould, J., Speer, K., Richardson, P. L., Prater, M. D., and Zhans, H. M., 2002. Directly measured mid-depth circulation in the northeastern North Atlantic Ocean, Nature, 419, 603–7.CrossRefGoogle ScholarPubMed
Bracco, A., Lacasce, J., Pasquero, C., and Provenzale, A., 2000. The velocity distribution of barotropic turbulence. Phys. Fluid, 12, 2478–88.CrossRefGoogle Scholar
Brink, K., Beardsley, R., Niiler, P., Abbott, M., Huyer, A., Samp, R., Stanton, T., and Stuart, D., 1991. Statistical properties of near-surface flow in the California coastal transition zone. J. of Geoph. Res., 96, 14693–706.CrossRefGoogle Scholar
Bryan, K., Dukowicz, J., and Smith, R., 1999. On the mixing coefficient in the parameterisation of bolus velocity. J. of Phys. Oceanogr., 29, 2442–56.2.0.CO;2>CrossRefGoogle Scholar
Verdière, Colin A., 1983. Lagrangian eddy statistics from surface drifters in the eastern North Atlantic. J. of Mar. Res., 41, 375–98.CrossRefGoogle Scholar
Davis, R. E., 1991a. Observing the general circulation with floats. Deep Sea Res., 38 (Suppl.), 531–71.CrossRefGoogle Scholar
Davis, R. E., 1991b. Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 43–64.CrossRefGoogle Scholar
Elhmaidi, D., Provenzale, A., and Babiano, A., 1993. Elementary topology of two-dimensional turbulence. J. of Fluid Mech., 242, 655–700.Google Scholar
Figueroa, H. A. and Olson, D. B., 1989. Lagrangian statistics in the South Atlantic as derived from SOS and FGGE drifters. J. of Mar. Res., 47, 525–46.CrossRefGoogle Scholar
Fratantoni, D. M., 2001. North Atlantic surface circulation during the 1990s observed with satellite-tracked drifters. J. of Geoph. Res., 106, 22067–93.CrossRefGoogle Scholar
Freeland, H. J., Rhines, P. B., and Rossby, H. T., 1975. Statistical observations of the trajectories of neutrally buoyant floats in the North Atlantic. J. of Geoph. Res., 33, 383–404.Google Scholar
Griffa, A., Owens, K., Piterbarg, L., and Rozovskij, B., 1995. Estimates of turbulence parameters from Lagrangian data using a stochastic particle model. J. of Mar. Res., 53, 371–401.CrossRefGoogle Scholar
Griffa A., 1996. Applications of stochastic particle models to oceanographic problems. In Stochastic Modelling in Physical Oceanography, ed. Adler, R., Muller, P., and Rozovskii, B.. Cambridge, MA: Birkhäuser Boston.CrossRefGoogle Scholar
Hofmann, E. E., 1985. The large-scale horizontal structure of the Atlantic Circumpolar Current from FGGE drifters. J. of Geoph. Res., 90, 7087–97.CrossRefGoogle Scholar
Hua, B. L., McWilliams, J., and Klein, P., 1998. Lagrangian accelerations in geostrophic turbulence. J. Fluid. Mech., 366, 157–76.CrossRefGoogle Scholar
Fériet, Kampé J., 1939. Les fonctions aléatoires stationnaires et la théorie statistique de la turbulence homogène. Ann. Soc. Sci. Bruxelles, 59, 15–194.Google Scholar
Krauss, W. and Böning, C. W., 1987. Lagrangian properties of eddy fields in the northern North Atlantic as deduced from satellite-tracked buoys. J. of Mar. Res., 45, 252–91.CrossRefGoogle Scholar
Lacasce, J. H., 2000. Floats and f/H. J. Mar. Res., 58, 61–95.CrossRefGoogle Scholar
Lumpkin, R. and Flament, P., 2000. Lagrangian statistics in the central North Pacific. J. of Mar. Syst., 24, 141–55.Google Scholar
Lumpkin, R., Treguier, A. M., and Speer, K., 2002. Lagrangian eddy scales in the Northern Atlantic Ocean. J. of Phys. Oceanogr., 32, 2425–40.CrossRefGoogle Scholar
McNally, G. J., Patzert, W. C., Kirwan, A., and Vastano, D., 1983. The near surface circulation of the North Pacific using satellite tracked drifting buoys. J. of Geoph. Res., 88, 7507–18.CrossRefGoogle Scholar
Middleton, J. F., 1985. Drifter spectra and diffusivities. J. of Mar. Res., 43, 37–55.CrossRefGoogle Scholar
Owens, W. B., 1991. A statistical description of the mean circulation and eddy variability in the NW Atlantic using SOFAR floats. J. of Phys. Oceanogr., 28, 257–383.Google Scholar
Pasquero, C., Provenzale, A., and Babiano, A., 2001. Parameterization of dispersion in two dimensional turbulence. J. of Fluid Mech., 439, 279–303.CrossRefGoogle Scholar
Patterson, S. L., 1985. Surface circulation and kinetic energy distributions in the Southern Hemisphere oceans from FGGE drifting buoys. J. of Phys. Oceanogr., 15, 865–84.2.0.CO;2>CrossRefGoogle Scholar
Pope, S. B., 1994. Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech., 26, 23–63.CrossRefGoogle Scholar
Pope, S. B., 2002. A stochastic Lagrangian model for acceleration in turbulent flows. Phys. of Fluids., 14, (7), 2360–75.CrossRefGoogle Scholar
Reynolds, A. M., 2002. On Lagrangian stochastic modelling of material transport in oceanic gyres. Physica D, 172, 124–38.CrossRefGoogle Scholar
Richardson, P. L., 1983. Eddy kinetic energy in the North Atlantic from surface drifters. J. of Geoph. Res., 88, 4355–67.CrossRefGoogle Scholar
Richardson, P. L., 1993. A census of eddies observed in North Atlantic SOFAR float data. Progress in Oceanography, 31, 1–50.CrossRefGoogle Scholar
Riser, S. and Rossby, H. T., 1983. Quasi-Lagrangian structure and variability of the subtropical western North Atlantic circulation. J. of Mar. Res., 41, 127–62.CrossRefGoogle Scholar
Rossby, H. T., S. Riser, and A. Mariano, 1983. The western North Atlantic – a Lagrangian view-point. Eddies in Marine Science, ed. Robinson, A.. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Rupolo, V., Hua, B. L., Provenzale, A., and Artale, V., 1996. Lagrangian spectra at 700 m in the western North Atlantic. J. of Phys. Oceanogr., 26, 1591–607.2.0.CO;2>CrossRefGoogle Scholar
Rupolo, V., Babiano, A., Artale, V., and Iudicone, D., 2003. Sensitivity of the Mediterranean circulation to horizontal space-time-dependent tracer diffusivity field in a OGCM. Nuovo Cimento, 26 C 4, 387–415.Google Scholar
Sawford, B. L., 1991. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluid A, 3(6), 1577–86.CrossRefGoogle Scholar
Stammer, D., 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. of Phys. Oceanogr., 27, 1743–69.2.0.CO;2>CrossRefGoogle Scholar
Stammer, D., 1998. On eddy characteristics, eddy transport and mean flow properties. J. of Phys. Oceanogr., 28, 727–39.2.0.CO;2>CrossRefGoogle Scholar
Swenson, M. S. and Niiler, P. P., 1996. Statistical analysis of the surface circulation of the California current. J. of Geoph. Res., 101, 22631–45.CrossRefGoogle Scholar
Taylor, G. I., 1921. Diffusion by continuous movement. Proc. Lon. Math. Soc., 20, 196–212.Google Scholar
Treguier, A., Held, I., and Larichev, V., 1997. On the parameterisation of quasigeostrophic eddies in primitive equation models. J. of Phys. Oceanogr., 27, 567–80.2.0.CO;2>CrossRefGoogle Scholar
Veneziani, M., Griffa, A., Reynolds, A. M., and Mariano, A., 2004. Oceanic turbulence and stochastic models from subsurface Lagrangian data for the north-west Atlantic Ocean. J. of Phys. Oceanogr., 34, 1884–1906.2.0.CO;2>CrossRefGoogle Scholar
Visbeck, M., Marshall, J., and Haine, T., 1997. Specification of eddy transfer coefficient in coarse-resolution ocean circulation model. J. of Phys. Oceanogr., 27, 381–402.2.0.CO;2>CrossRefGoogle Scholar
WOCE Data Products Committee, 2002. WOCE Global Data: Subsurface Floats and Surface Velocity Data, Version 3.0, WOCE Report No. 180/02, WOCE International Project Office Southampton, UK.
Zhang, H. M., Prater, M. D., and Rossby, H. T., 2001. Isopycnal Lagrangian statistics from the North Atlantic Current RAFOS float observations. J. of Geoph, Res., 106, 13817–36.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×