Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T22:45:14.274Z Has data issue: false hasContentIssue false

5 - Digital Image Processing

Published online by Cambridge University Press:  05 June 2012

Eric Miller
Affiliation:
Tufts University
Clem Karl
Affiliation:
Boston University
Bahaa Saleh
Affiliation:
University of Central Florida
Get access

Summary

This chapter addresses two topics: (i) discretization and matrix representation of imaging systems, i.e., digital imaging, and (ii) inversion of the imaging equation, i.e., reconstruction of the unknown object from the measured image for both localized and tomographic imaging systems.

Digital Imaging. In the imaging systems described in Chapters 3 and 4, the object and image distributions are described by continuous functions, f(r) and g(r), related by integral linear transformations. Also, image inversion was realized by means of analytical techniques based on continuous operations such as inverse filtering for shift invariant systems, as in Sec. 3.3, and inverse Radon transform for tomographic imaging systems based on projections, as in Sec. 4.1. For many imaging systems, explicit analytical methods for inverting the imaging equations do not exist. Also, in reality, an image is detected by a finite number of sensors providing discrete data, which may not contain sufficient information for adequately approximating the transform techniques discussed in Chapters 3 and 4. In ray tomography, for example, when the number of projections is small, the quality of inversion becomes poor, as described in Sec. 4.1B. In these situations, it is useful to also discretize the object function f(r) and represent the imaging equation (the relationship between the finite number of observed measurements and the elements of the discrete object function) by a linear set of algebraic equations. This discretization process converts the continuous imaging model into a digital imaging model relating the array g of the observed measurements to the array f representing the object.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×