Published online by Cambridge University Press: 09 January 2021
Learning Outcomes
After reading this chapter, the reader will be able to:
List common connectivity protocols in IoT
Identify the salient features and application scope of each connectivity protocol
Understand the terminologies and technologies associated with IoT connectivity
Determine the requirements associated with each of these connectivity protocols in real-world solutions
Determine the most appropriate connectivity protocol for each segment of their IoT implementation
Introduction
This chapter outlines the main features of fifteen identified commonly used and upcoming IoT connectivity enablers. These connectivity technologies can be integrated with existing sensing, actuation, and processing solutions for extending connectivity to them. Some of these solutions necessarily require integration with a minimal form of processing infrastructure, such as Wi-Fi. In contrast, others, such as Zigbee, can work in a standalone mode altogether, without the need for external processing and hardware support. These solutions are outlined in the subsequent sections in this chapter.
IEEE 802.15.4
The IEEE 802.15.4 standard represents the most popular standard for low data rate wireless personal area networks (WPAN) [1]. This standard was developed to enable monitoring and control applications with lower data rate and extend the operational life for uses with low-power consumption. This standard uses only the first two layers—physical and data link—for operation along with two new layers above it: 1) logical link control (LLC) and 2) service-specific convergence sublayer (SSCS). The additional layers help in the communication of the lower layers with the upper layers. Figure 7.1 shows the IEEE 802.15.4 operational layers. The IEEE 802.15.4 standard was curated to operate in the ISM (industrial, scientific, and medical) band.
The direct sequence spread spectrum (DSSS) modulation technique is used in IEEE 802.15.4 for communication purposes, enabling a wider bandwidth of operation with enhanced security by the modulating pseudo-random noise signal. This standard exhibits high tolerance to noise and interference and offers better measures for improving link reliability. Typically, the low-speed versions of the IEEE 802.15.4 standard use binary phase shift keying (BPSK), whereas the versions with high data rate implement offset quadrature phase shift keying (O-QPSK) for encoding the message to be communicated. Carrier sense multiple access with collision avoidance (CSMA-CA) is the channel access method used for maintaining the sequence of transmitted signals and preventing deadlocks due to multiple sources trying to access the same channel.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.