Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T19:30:35.772Z Has data issue: false hasContentIssue false

4 - Nodal Curves and a Class of Solutions of the Lax Equation for Shock Clustering and Burgers Turbulence

Published online by Cambridge University Press:  19 March 2020

Ron Donagi
Affiliation:
University of Pennsylvania
Tony Shaska
Affiliation:
Oakland University, Michigan
Get access

Summary

In this paper, we present an expository account of the work done in the last few years in understanding a matrix Lax equation which arises in the study of scalar hyperbolic conservation laws with spectrally negative pure-jump Markov initial data. We begin with its extension to general N x N matrices, which is Liouville integrable on generic coadjoint orbits of a matrix Lie group. In the probabilistically interesting case in which the Lax operator is the generator of a pure-jump Markov process, the spectral curve is generically a fully reducible nodal curve. In this case, the equation is not Liouville integrable, but we can show that the flow is still conjugate to a straight line motion, and the equation is exactly solvable. En route, we establish a dictionary between an open, dense set of lower triangular generator matrices and algebro-geometric data which plays an important role in our analysis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×