Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword by Jón A. Benediktsson
- Acknowledgements
- PART I The Importance of Image Registration for Remote Sensing
- PART II Similarity Metrics for Image Registration
- PART III Feature Matching and Strategies for Image Registration
- 7 Registration of multiview images
- 8 New approaches to robust, point-based image registration
- 9 Condition theory for image registration and post-registration error estimation
- 10 Feature-based image to image registration
- 11 On the use of wavelets for image registration
- 12 Gradient descent approaches to image registration
- 13 Bounding the performance of image registration
- PART IV Applications and Operational Systems
- PART V Conclusion
- Index
- Plate section
- Plate section
- References
9 - Condition theory for image registration and post-registration error estimation
from PART III - Feature Matching and Strategies for Image Registration
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword by Jón A. Benediktsson
- Acknowledgements
- PART I The Importance of Image Registration for Remote Sensing
- PART II Similarity Metrics for Image Registration
- PART III Feature Matching and Strategies for Image Registration
- 7 Registration of multiview images
- 8 New approaches to robust, point-based image registration
- 9 Condition theory for image registration and post-registration error estimation
- 10 Feature-based image to image registration
- 11 On the use of wavelets for image registration
- 12 Gradient descent approaches to image registration
- 13 Bounding the performance of image registration
- PART IV Applications and Operational Systems
- PART V Conclusion
- Index
- Plate section
- Plate section
- References
Summary
Abstract
We present in this chapter applications of condition theory for image registration problems in a general framework that is easily adapted to a variety of image processing tasks. After summarizing the history and foundations of condition theory, a short analysis is given of computational sensitivity for point correspondence between images with respect to translation, rotation-scale-translation (RST), and affine pixel transforms. Several surprising results follow from this analysis, including the principal result that increasing transform complexity is mirrored by increasing computational sensitivity, i.e., KTrans ≤ KRST ≤ KAffine. The utility of condition-based corner detectors is also seen in the demonstrated equivalence between the translational condition number and the commonly used Shi-Tomasi corner function. These results are supplemented by a short discussion of sensitivity estimation for the computed transform parameters and any resulting registration misalignment.
Introduction
The central issue in image registration is the problem of establishing correspondence between image features, whether they are point features (e.g., corner locations) or extended features (e.g., level sets). Corresponding features then act as input for the process of computing a low-dimensional pixel map between images. The success of this approach depends on the accuracy of the feature correspondence, in the sense that mismatched features can lead to completely erroneous transform estimates. Mismatches may be due to computational constraints that limit the complexity of the feature-matching algorithm or may be intrinsic to the image pair as is the case with identical local features, such as windows in an office building.
- Type
- Chapter
- Information
- Image Registration for Remote Sensing , pp. 200 - 214Publisher: Cambridge University PressPrint publication year: 2011