Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- List of Participants
- An introduction to idempotency
- Tropical semirings
- Some automata-theoretic aspects of min-max-plus semirings
- The finite power property for rational sets of a free group
- The topological approach to the limitedness problem on distance automata
- Types and dynamics in partially additive categories
- Task resource models and (max, +) automata
- Algebraic system analysis of timed Petri nets
- Ergodic theorems for stochastic operators and discrete event networks.
- Computational issues in recursive stochastic systems
- Periodic points of nonexpansive maps
- A system-theoretic approach for discrete-event control of manufacturing systems
- Idempotent structures in the supervisory control of discrete event systems
- Maxpolynomials and discrete-event dynamic systems
- The Stochastic HJB equation and WKB method
- The Lagrange problem from the point of view of idempotent analysis
- A new differential equation for the dynamics of the Pareto sets
- Duality between probability and optimization
- Maslov optimization theory: topological aspect
- Random particle methods in (max, +) optimization problems
- The geometry of finite dimensional pseudomodules
- A general linear max-plus solution technique
- Axiomatics of thermodynamics and idempotent analysis
- The correspondence principle for idempotent calculus and some computer applications
Some automata-theoretic aspects of min-max-plus semirings
Published online by Cambridge University Press: 05 May 2010
- Frontmatter
- Contents
- Foreword
- Preface
- List of Participants
- An introduction to idempotency
- Tropical semirings
- Some automata-theoretic aspects of min-max-plus semirings
- The finite power property for rational sets of a free group
- The topological approach to the limitedness problem on distance automata
- Types and dynamics in partially additive categories
- Task resource models and (max, +) automata
- Algebraic system analysis of timed Petri nets
- Ergodic theorems for stochastic operators and discrete event networks.
- Computational issues in recursive stochastic systems
- Periodic points of nonexpansive maps
- A system-theoretic approach for discrete-event control of manufacturing systems
- Idempotent structures in the supervisory control of discrete event systems
- Maxpolynomials and discrete-event dynamic systems
- The Stochastic HJB equation and WKB method
- The Lagrange problem from the point of view of idempotent analysis
- A new differential equation for the dynamics of the Pareto sets
- Duality between probability and optimization
- Maslov optimization theory: topological aspect
- Random particle methods in (max, +) optimization problems
- The geometry of finite dimensional pseudomodules
- A general linear max-plus solution technique
- Axiomatics of thermodynamics and idempotent analysis
- The correspondence principle for idempotent calculus and some computer applications
Summary
Abstract
This paper is devoted to the survey of some automata-theoretic aspects of different exotic semirings, i.e. semirings whose underlying set is some subset of ℝ equiped with min, max or + as sum and/or product. We here address three types of properties related to rational series with multiplicities in such semirings: structure of supports, decidability of equality and inequality problems, and Fatou properties.
Introduction
Min–max–plus computations are used in several areas. These techniques appeared initially in the seventies in the context of Operations Research for analyzing discrete event systems (cf. Chapter 3 of [5]; see also [1] for a survey of these aspects of the theory). In another direction, the (min/max, +) semirings were also used in mathematical physics in the study of several partial differential equations which, like the Hamilton–Jacobi equation, appeared to be (min, +)-linear (see for instance the last chapter of Maslov's book [9]). It is also interesting to observe that similar objects were studied for Artificial Intelligence purposes: the fuzzy calculus involves indeed essentially (min, max) semirings (see [3] for more details and extensive references on this area).
More recently, the min–max–plus techniques have also appeared in formal language theory: the so-called tropical semiring, i.e. ℳ = (ℕ∪{+ ∞}, min, +), played indeed a central role in the study and solution of the finite power problem for rational languages (which is the problem of deciding whether the star of a given rational language L is equal to some finite union of iterated concatenations of L; cf. [6]).
- Type
- Chapter
- Information
- Idempotency , pp. 70 - 79Publisher: Cambridge University PressPrint publication year: 1998
- 4
- Cited by