Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T07:46:34.738Z Has data issue: false hasContentIssue false

5 - Theory of statically-indeterminate frameworks: the reciprocal theorem

Published online by Cambridge University Press:  18 September 2009

Get access

Summary

The precise analysis of statically-indeterminate systems of bars, including trusses and pin-jointed frameworks generally, seems to be due to the famous French engineer, Navier. It was included in his lectures at l'Ecole des Ponts et Chaussées, which appeared in the form of his celebrated Leçons in 1826. According to Saint-Venant (Navier, 1864, p. 108) the method was part of the course as early as 1819. It was elaborated (1862) by the mathematician Clebsch in Germany; while, in Britain, Maxwell (1864b) who, it seems, was unaware of Navier's elegant and general method, published an original method of solving the problem. Levy, who was apparently aware of Navier's work, published a novel method in 1874 (Chapter 6). But it was not really until the German engineer, Mohr, published his analysis in the same year that the subject began to be appreciated by engineers (on the Continent at first and much later in Britain).

This chapter is concerned with those original contributions, in principle only: various sophistications and devices to increase their utility in engineering are considered in Chapters 8 and 10.

Navier, 1826

Navier's contribution to the analysis of statically-indeterminate pin-jointed systems is to be found essentially in the two articles of his Leçons (1826, art. 632, p. 296; 1833, art. 533, p. 345).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×