Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of abbreviations
- Introduction
- 1 Heterostructure materials
- 2 Semiclassical theory of heterostructures
- 3 Quantum theory of heterostructures
- 4 Quantum heterostructure devices
- 5 Scattering processes in heterostructures
- 6 Scattering-assisted tunneling
- 7 Frequency response of quantum devices from DC to infrared
- 8 Charge control of the two-dimensional electron gas
- 9 High electric field transport
- 10 I – V model of the MODFET
- 11 Small- and large-signal AC models for the long-channel MODFET
- 12 Small- and large-signal AC models for the short-channel MODFET
- 13 DC and microwave electrothermal modeling of FETs
- 14 Analytical DC analysis of short-gate MODFETs
- 15 Small-signal AC analysis of the short-gate velocity-saturated MODFET
- 16 Gate resistance and the Schottky-barrier interface
- 17 MODFET high-frequency performance
- 18 Modeling high-performance HBTs
- 19 Practical high-frequency HBTs
- Index
3 - Quantum theory of heterostructures
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of abbreviations
- Introduction
- 1 Heterostructure materials
- 2 Semiclassical theory of heterostructures
- 3 Quantum theory of heterostructures
- 4 Quantum heterostructure devices
- 5 Scattering processes in heterostructures
- 6 Scattering-assisted tunneling
- 7 Frequency response of quantum devices from DC to infrared
- 8 Charge control of the two-dimensional electron gas
- 9 High electric field transport
- 10 I – V model of the MODFET
- 11 Small- and large-signal AC models for the long-channel MODFET
- 12 Small- and large-signal AC models for the short-channel MODFET
- 13 DC and microwave electrothermal modeling of FETs
- 14 Analytical DC analysis of short-gate MODFETs
- 15 Small-signal AC analysis of the short-gate velocity-saturated MODFET
- 16 Gate resistance and the Schottky-barrier interface
- 17 MODFET high-frequency performance
- 18 Modeling high-performance HBTs
- 19 Practical high-frequency HBTs
- Index
Summary
… I think I can safely say that nobody understands quantum mechanics.
The Character of Physical Law, Richard FeynmanIntroduction
Modern technology has made possible the growth of thin crystalline epitaxial layers of different semiconductors. These epitaxial layers can be as small as a few lattice parameters. For small heterostructures (100 Å or less) a quantum treatment of heterostructures becomes necessary. In this chapter we will attempt to build a quantum picture of heterostructures. Note that the conventional quantum picture of a semiconductor crystal cannot be applied to rapidly varying semiconductor heterostructures since crystals are defined as periodic structures extending up to infinity. New theoretical techniques are thus required to describe these ‘spatially-varying crystals’.
Our quantum picture will be based upon an envelope model. An envelope model focuses on calculating the relative distribution of the wave-function from atomic cell to atomic cell rather than on the detailed distribution of the electron wave-function in each atomic cell.
The particular envelope picture we shall use is the so-called generalized Wannier picture. The generalized Wannier picture is capable of handling both the concept of band structure and the concept of its variation in space in a rigorous fashion. This model will therefore permit us to understand the impact of the interface upon the band structure in a heterojunction.
Other envelope pictures have been developed such as the Ben Daniel Duke Hamiltonian (effective-mass model [10], see also [11]), the k · p envelope model ([11]), and the tight-binding model ([8]).
- Type
- Chapter
- Information
- High-Speed Heterostructure DevicesFrom Device Concepts to Circuit Modeling, pp. 53 - 96Publisher: Cambridge University PressPrint publication year: 2002