Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of abbreviations
- Introduction
- 1 Heterostructure materials
- 2 Semiclassical theory of heterostructures
- 3 Quantum theory of heterostructures
- 4 Quantum heterostructure devices
- 5 Scattering processes in heterostructures
- 6 Scattering-assisted tunneling
- 7 Frequency response of quantum devices from DC to infrared
- 8 Charge control of the two-dimensional electron gas
- 9 High electric field transport
- 10 I – V model of the MODFET
- 11 Small- and large-signal AC models for the long-channel MODFET
- 12 Small- and large-signal AC models for the short-channel MODFET
- 13 DC and microwave electrothermal modeling of FETs
- 14 Analytical DC analysis of short-gate MODFETs
- 15 Small-signal AC analysis of the short-gate velocity-saturated MODFET
- 16 Gate resistance and the Schottky-barrier interface
- 17 MODFET high-frequency performance
- 18 Modeling high-performance HBTs
- 19 Practical high-frequency HBTs
- Index
Preface
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of abbreviations
- Introduction
- 1 Heterostructure materials
- 2 Semiclassical theory of heterostructures
- 3 Quantum theory of heterostructures
- 4 Quantum heterostructure devices
- 5 Scattering processes in heterostructures
- 6 Scattering-assisted tunneling
- 7 Frequency response of quantum devices from DC to infrared
- 8 Charge control of the two-dimensional electron gas
- 9 High electric field transport
- 10 I – V model of the MODFET
- 11 Small- and large-signal AC models for the long-channel MODFET
- 12 Small- and large-signal AC models for the short-channel MODFET
- 13 DC and microwave electrothermal modeling of FETs
- 14 Analytical DC analysis of short-gate MODFETs
- 15 Small-signal AC analysis of the short-gate velocity-saturated MODFET
- 16 Gate resistance and the Schottky-barrier interface
- 17 MODFET high-frequency performance
- 18 Modeling high-performance HBTs
- 19 Practical high-frequency HBTs
- Index
Summary
High-speed heterostructure devices is a textbook on modern high-speed semiconductor devices intended for both graduate students and practising engineers. This book is concerned with the physics and processes involved in the devices’ operation as well as some of the most recent techniques for modeling and simulating these devices. Emphasis is placed on the heterostructure devices of the immediate future: namely the MODFET, HBT and RTD. The principle of operation of other devices such as the Bloch oscillator, RITD, Gunn diode, quantum cascade laser and SOI and LD MOSFETs is also introduced.
This text was initially developed for a graduate course taught at The Ohio State University and comes with a complete set of homework problems. MATLAB programs are also available for supporting the lecture material. They can be used to regenerate a number of the pictures in the book and to assist the reader with some of the homework assignments.
This book should also prove useful to researchers and engineers, as it presents research material which is disseminated throughout the research literature and has never before been presented together in a book.
This text starts with two chapters reviewing the semiclassical theory of heterostructure devices. Five chapters are dedicated to presenting a realistic picture of heterostructures, introducing quantum devices and developing practical tools for analyzing quantum transport in these devices in the presence of scattering, and at high frequencies. One chapter is focused on the Boltzmann equation and its application to the derivation of moment equations for high-field transport.
- Type
- Chapter
- Information
- High-Speed Heterostructure DevicesFrom Device Concepts to Circuit Modeling, pp. xix - xxvPublisher: Cambridge University PressPrint publication year: 2002