Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of abbreviations
- Introduction
- 1 Heterostructure materials
- 2 Semiclassical theory of heterostructures
- 3 Quantum theory of heterostructures
- 4 Quantum heterostructure devices
- 5 Scattering processes in heterostructures
- 6 Scattering-assisted tunneling
- 7 Frequency response of quantum devices from DC to infrared
- 8 Charge control of the two-dimensional electron gas
- 9 High electric field transport
- 10 I – V model of the MODFET
- 11 Small- and large-signal AC models for the long-channel MODFET
- 12 Small- and large-signal AC models for the short-channel MODFET
- 13 DC and microwave electrothermal modeling of FETs
- 14 Analytical DC analysis of short-gate MODFETs
- 15 Small-signal AC analysis of the short-gate velocity-saturated MODFET
- 16 Gate resistance and the Schottky-barrier interface
- 17 MODFET high-frequency performance
- 18 Modeling high-performance HBTs
- 19 Practical high-frequency HBTs
- Index
14 - Analytical DC analysis of short-gate MODFETs
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of abbreviations
- Introduction
- 1 Heterostructure materials
- 2 Semiclassical theory of heterostructures
- 3 Quantum theory of heterostructures
- 4 Quantum heterostructure devices
- 5 Scattering processes in heterostructures
- 6 Scattering-assisted tunneling
- 7 Frequency response of quantum devices from DC to infrared
- 8 Charge control of the two-dimensional electron gas
- 9 High electric field transport
- 10 I – V model of the MODFET
- 11 Small- and large-signal AC models for the long-channel MODFET
- 12 Small- and large-signal AC models for the short-channel MODFET
- 13 DC and microwave electrothermal modeling of FETs
- 14 Analytical DC analysis of short-gate MODFETs
- 15 Small-signal AC analysis of the short-gate velocity-saturated MODFET
- 16 Gate resistance and the Schottky-barrier interface
- 17 MODFET high-frequency performance
- 18 Modeling high-performance HBTs
- 19 Practical high-frequency HBTs
- Index
Summary
The most creative theories are often imaginative visions imposed on facts.
Stephen J. GouldIntroduction
Of the various three-terminal devices proposed or demonstrated over the last couple of decades, the modulation doped field-effect transistor (MODFET) (or high-electronmobility transistor (HEMT)) and the heterojunction bipolar transistor (HBT) (Chapters 2, 18 and 19) are the most successful. The two-terminal resonant tunneling diode (RTD) (Chapters 4 and 6) is also of great interest because of the extremely compact low-power high-speed digital circuitry it makes possible when integrated, for instance, with HEMTs (see e.g. [1]). Table 14.1 shows, for several transistor technologies, representative values (1999) for circuit frequency range, device cut-off frequencies, off-state breakdown voltage, maximum output power, power-added efficiency and noise figures with associated gain. The SiGe HBT is very attractive because of the potentially low cost of manufacturing and cut-off frequencies high enough for most wireless applications. For applications in a similar frequency range that require larger microwave output power, the GaAs-based HBT is an even better candidate. This device also shows very low 1/ƒ noise, which translates into low oscillator phase noise. In addition to its speed, one advantage of the InP-based HBT is its surface properties which allow smaller devices. When special processing techniques are employed such down-scaling can result in very impressive power-gain cut-off frequency and circuit performance [2, 3].
When high frequencies and low noise are required the device of choice is typically a III–V Schottky-barrier-gate field-effect transistor FET (SBGFET), several examples of which appear in Table 14.1.
- Type
- Chapter
- Information
- High-Speed Heterostructure DevicesFrom Device Concepts to Circuit Modeling, pp. 442 - 489Publisher: Cambridge University PressPrint publication year: 2002