Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T22:44:01.748Z Has data issue: false hasContentIssue false

6 - Plane wave methods for approximating the time harmonic wave equation

Published online by Cambridge University Press:  07 September 2011

T. Luostari
Affiliation:
University of Kuopio
T. Huttunen
Affiliation:
University of Kuopio
P. Monk
Affiliation:
University of Delaware
Bjorn Engquist
Affiliation:
University of Texas, Austin
Athanasios Fokas
Affiliation:
University of Cambridge
Ernst Hairer
Affiliation:
Université de Genève
Arieh Iserles
Affiliation:
University of Cambridge
Get access

Summary

Abstract

In this paper we shall discuss plane wave methods for approximating the time-harmonic wave equation paying particular attention to the Ultra Weak Variational Formulation (UWVF). This method is essentially a Discontinuous Galerkin (DG) method in which the approximating functions are special traces of solutions of the underlying Helmholtz equation. We summarize the known error analysis for this method, as well as recent attempts to improve the conditioning of the resulting linear system. There are several refinement strategies that can be used to improve the accuracy of the computed solution: h-refinement in which the mesh is refined with a fixed number of basis functions per element, the p-version in which the number of approximating functions per element is increased with a fixed mesh, and a combined hp strategy. We shall provide some numerical results on h and p convergence showing how methods of this type can sometimes provide an efficient solver.

Introduction

Traditional methods for discretizing the Helmholtz equation based on using the equation directly suffer from the problem that they become rapidly more expensive as the wave number k (see Eq. (1.1)) increases. For example, finite element, finite difference, finite volume and discontinuous Galerkin methods all suffer from “pollution error” due to the fact that discrete waves have a slightly different wavelength than their exact counterparts (since this error in the wavelength depends on the wave number k, this leads to the “dispersion” of a wave).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×