Published online by Cambridge University Press: 05 October 2012
Introduction
Extracellular electric potentials, such as local field potentials (LFPs) or the electroencephalogram (EEG), are routinely measured in electrophysiological experiments. LFPs are recorded using micrometer-size electrodes, and sample relatively localized populations of neurons, as these signals can be very different for electrodes separated by 1 mm (Destexhe et al., 1999a) or by a few hundred micrometers (Katzner et al., 2009). In contrast, the EEG is recorded from the surface of the scalp using millimeter-scale electrodes and samples much larger populations of neurons (Niedermeyer and Lopes da Silva, 1998). LFPs are subject to much less filtering compared to EEG, because EEG signals must propagate through various media, such as cerebrospinal fluid, dura mater, cranium, muscle and skin. LFP signals are also filtered, because the recording electrode is separated from the neuronal sources by portions of cortical tissue. Besides these differences, EEG and LFP signals display the same characteristics during wake and sleep states (Steriade, 2003).
The observation that action potentials have a limited participation in the genesis of the EEG or LFPs dates from early studies. Bremer (1938, 1949) was the first to propose that the EEG is not generated by action potentials, based on the mismatch of the time course of EEG waves with action potentials. Eccles (1951) proposed that LFP and EEG activities are generated by summated postsynaptic potentials arising from the synchronized excitation of cortical neurons. Intracellular recordings from cortical neurons later demonstrated a close correspondence between EEG/LFP activity and synaptic potentials (Klee et al., 1965; Creutzfeldt et al., 1966a, 1966b).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.