Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T02:46:47.839Z Has data issue: false hasContentIssue false

8 - Classical and atypical HFE hemochromatosis

Published online by Cambridge University Press:  01 June 2011

James C. Barton
Affiliation:
University of Alabama, Birmingham
Corwin Q. Edwards
Affiliation:
University of Utah Medical Center
Pradyumna D. Phatak
Affiliation:
University of Rochester Medical Center, New York
Robert S. Britton
Affiliation:
St Louis University, Missouri
Bruce R. Bacon
Affiliation:
St Louis University, Missouri
James C. Barton
Affiliation:
University of Alabama, Birmingham
Corwin Q. Edwards
Affiliation:
University of Utah School of Medicine, Salt Lake City
Pradyumna D. Phatak
Affiliation:
University of Rochester Medical Center, New York
Robert S. Britton
Affiliation:
St Louis University, Missouri
Bruce R. Bacon
Affiliation:
St Louis University, Missouri
Get access

Summary

Hemochromatosis and HFE mutations

The “classical” type of familial hemochromatosis that is transmitted as an autosomal recessive disorder is usually due to homozygosity for the C282Y mutation of the HFE gene. It is expected that mutations of HFE cause the great majority of the cases of heritable iron overload in humans. There are at least 37 known mutations of the HFE gene (Table 8.1) (Chapter 4). Some individuals who are homozygous for any of the known mutations may develop heavy iron overload. At least six mutations are associated with mild iron accumulation; and at least six mutations were discovered in patients who did not have iron overload. There is insufficient reported information in the literature to determine if six of the mutations are sufficiently deleterious to result in iron overload. Approximately 1500 mutations of the cystic fibrosis gene (CF) are known, and the gene encodes a 1480 amino acid protein. In contrast, HFE is much smaller than CF, and encodes a protein of only 343 amino acids. Thus, it is expected that fewer mutations of HFE than mutations of CF will be eventually discovered.

Molecular genetics

Although the autosomal recessive inheritance pattern of “classical” hemochromatosis had long been recognized, identification of the responsible gene remained elusive for many years (Table 8.1). An important breakthrough in the search for the gene occurred in 1976 when hemochromatosis was found to be linked closely to the human leukocyte antigen (HLA)-A*03 region of the short arm of chromosome 6.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Simon, M, Bourel, M, Fauchet, R, Genetet, B. Association of HLA-A3 and HLA-B14 antigens with idiopathic haemochromatosis. Gut 1976; 17: 332–4.CrossRefGoogle ScholarPubMed
Feder, JN, Gnirke, A, Thomas, W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13: 399–408.CrossRefGoogle ScholarPubMed
Zhou, XY, Tomatsu, S, Fleming, RE, et al. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA 1998; 95: 2492.CrossRefGoogle ScholarPubMed
Levy, JE, Montross, LK, Cohen, , Fleming, MD, Andrews, NC. The C282Y mutation causing hereditary hemochromatosis does not produce a null allele. Blood 1999; 94: 9–11.Google Scholar
Feder, JN, Tsuchihashi, Z, Irrinki, A, et al. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 1997; 272: 14025–8.CrossRefGoogle ScholarPubMed
Waheed, A, Parkkila, S, Zhou, XY, et al. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci USA 1997; 94: 12384–9.CrossRefGoogle ScholarPubMed
Santos, M, Schilham, MW, Rademakers, LH, Marx, JJ, Sousa, M, Clevers, H. Defective iron homeostasis in beta2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man. J Exp Med 1996; 184: 1975–85.CrossRefGoogle Scholar
Fleming, RE, Britton, RS, Waheed, A, Sly, WS, Bacon, BR. Pathogenesis of hereditary hemochromatosis. Clin Liver Dis 2004; 8: 7553, vii.CrossRefGoogle ScholarPubMed
Beckman, , Saha, N, Spitsyn, V, Landeghem, G, Beckman, L. Ethnic differences in the HFE codon 282 (Cys/Tyr) polymorphism. Hum Hered 1997; 47: 263.CrossRefGoogle ScholarPubMed
Rochette, J, Pointon, JJ, Fisher, CA, et al. Multicentric origin of hemochromatosis gene (HFE) mutations. Am J Hum Genet 1999; 64: 1056–62.CrossRefGoogle ScholarPubMed
Beutler, E, Felitti, VJ, Koziol, JA, Ho, NJ, Gelbart, T. Penetrance of 845G–> A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 2002; 359: 211–18.CrossRefGoogle ScholarPubMed
Jacolot, S, Gac, G, Scotet, V, Quere, I, Mura, C, Ferec, C. HAMP as a modifier gene that increases the phenotypic expression of the HFE pC282Y homozygous genotype. Blood 2004; 103: 2835–40.CrossRefGoogle ScholarPubMed
Steinberg, KK, Cogswell, ME, Chang, JC, et al. Prevalence of C282Y and H63D mutations in the hemochromatosis (HFE) gene in the United States. JAMA 2001; 285: 2216–22.CrossRefGoogle ScholarPubMed
Gochee, PA, Powell, LW, Cullen, DJ, Du, SD, Rossi, E, Olynyk, JK. A population-based study of the biochemical and clinical expression of the H63D hemochromatosis mutation. Gastroenterology 2002; 122: 6461.CrossRefGoogle ScholarPubMed
Barton, JC, Shih, WW, Sawada-Hirai, R, et al. Genetic and clinical description of hemochromatosis probands and heterozygotes: evidence that multiple genes linked to the major histocompatibility complex are responsible for hemochromatosis. Blood Cells Mol Dis 1997; 23: 135–45.CrossRefGoogle ScholarPubMed
Pointon, JJ, Wallace, D, Merryweather-Clarke, AT, Robson, KJ. Uncommon mutations and polymorphisms in the hemochromatosis gene. Genet Test 2000; 4: 151–61.CrossRefGoogle ScholarPubMed
Beutler, E, Griffin, MJ, Gelbart, T, West, C. A previously undescribed nonsense mutation of the HFE gene. Clin Genet 2002; 61: 40–2.CrossRefGoogle ScholarPubMed
Barton, JC, West, C, Lee, PL, Beutler, E. A previously undescribed frameshift deletion mutation of HFE (c.del277; G93fs) associated with hemochromatosis and iron overload in a C282Y heterozygote. Clin Genet 2004; 66: 214–16.CrossRefGoogle Scholar
Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. 01–23–2010.
Fleming, RE, Britton, RS.Iron Imports. VI. HFE and regulation of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 2006; 290: G590–4.CrossRefGoogle ScholarPubMed
Goswami, T, Andrews, NC.Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 2006; 281: 28 494–8.CrossRefGoogle ScholarPubMed
Schmidt, PJ, Toran, PT, Giannetti, AM, Bjorkman, PJ, Andrews, NC. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 2008; 7: 205–14.CrossRefGoogle ScholarPubMed
Bridle, KR, Frazer, DM, Wilkins, SJ, et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 2003; 361: 6693.CrossRefGoogle ScholarPubMed
Vujic Spasic, M, Kiss, J, Herrmann, T, et al. Hfe acts in hepatocytes to prevent hemochromatosis. Cell Metab 2008; 7: 173–8.CrossRefGoogle ScholarPubMed
Stuart, KA, Anderson, GJ, Frazer, DM, et al. Duodenal expression of iron transport molecules in untreated haemochromatosis subjects. Gut 2003; 52: 953–9.CrossRefGoogle ScholarPubMed
Bezwoda, WR, Disler, PB, Lynch, SR, et al. Patterns of food iron absorption in iron-deficient white and Indian subjects and in venesected haemochromatotic patients. Br J Haematol 1976; 33: 425–36.CrossRefGoogle ScholarPubMed
Lynch, SR, Skikne, BS, Cook, JD. Food iron absorption in idiopathic hemochromatosis. Blood 1989; 74: 2187–93.Google ScholarPubMed
Parmley, RT, Barton, JC, Conrad, ME. Ultrastructural localization of transferrin, transferrin receptor, and iron-binding sites on human placental and duodenal microvilli. Br J Haematol 1985; 60: 81–9.CrossRefGoogle ScholarPubMed
Whittaker, P, Skikne, BS, Covell, AM, et al. Duodenal iron proteins in idiopathic hemochromatosis. J Clin Invest 1989; 83: 261.CrossRefGoogle ScholarPubMed
Feder, JN, Penny, DM, Irrinki, A, et al. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 1998; 95: 1472.CrossRefGoogle ScholarPubMed
Lebron, JA, Bennett, MJ, Vaughn, , et al. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 1998; 93: 111–23.CrossRefGoogle ScholarPubMed
Kelleher, T, Ryan, E, Barrett, S, et al. Increased DMT1 but not IREG1 or HFE mRNA following iron depletion therapy in hereditary haemochromatosis. Gut 2004; 53: 1174–9.CrossRefGoogle ScholarPubMed
Turnbull, A, Giblett, ER. The binding and transport of iron by transferrin variants. J Lab Clin Med 1961; 57: 450–9.Google ScholarPubMed
Bothwell, TH, Jacobs, P, Torrance, JD. Studies on the behavior of transferrin in idiopathic haemochromatosis. S Afr J Med Sci 1962; 27: 35–9.Google ScholarPubMed
Wheby, MS, Balcerzak, SP, Anderson, P, Crosby, WH. Clearance of iron from hemochromatotic and normal transferin in vivo. Blood 1964; 24: 765–9.Google Scholar
Batey, RG, Lai Chung, FP, Shamir, S, Sherlock, S. A non-transferrin-bound serum iron in idiopathic hemochromatosis. Dig Dis Sci 1980; 25: 340–6.CrossRefGoogle ScholarPubMed
Cairo, G, Conte, D, Bianchi, L, Fraquelli, M, Recalcati, S. Reduced serum ceruloplasmin levels in hereditary haemochromatosis. Br J Haematol 2001; 114: 226–9.CrossRefGoogle ScholarPubMed
Laine, F, Ropert, M, Lan, CL, et al. Serum ceruloplasmin and ferroxidase activity are decreased in HFE C282Y homozygote male iron overloaded patients. J Hepatol 2002; 36: 60.CrossRefGoogle ScholarPubMed
Sciot, R, Paterson, AC, Oord, JJ, Desmet, VJ. Lack of hepatic transferrin receptor expression in hemochromatosis. Hepatology 1987; 7: 831.CrossRefGoogle ScholarPubMed
Lombard, M, Bomford, A, Hynes, M, et al. Regulation of the hepatic transferrin receptor in hereditary hemochromatosis. Hepatology 1989; 9: 1.CrossRefGoogle ScholarPubMed
Kawabata, H, Yang, R, Hirama, T, et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999; 274: 20826–32.CrossRefGoogle ScholarPubMed
Chua, ACG, Delima, RD, Morgan, EH, et al. Iron uptake from plasma transferrin by a transferrin receptor 2 mutant mouse model of haemachromatosis, J Hepatol (in press).
Merle, U, Theilig, F, Fein, E, et al. Localization of the iron-regulatory proteins hemojuvelin and transferrin receptor 2 to the basolateral membrane domain of hepatocytes. Histochem Cell Biol 2007; 127: 221–6.CrossRefGoogle ScholarPubMed
Davies, PS, Zhang, AS, Anderson, EL, et al. Evidence for the interaction of the hereditary haemochromatosis protein, HFE, with the transferrin receptor in endocytic compartments. Biochem J 2003; 373: 1453.CrossRefGoogle ScholarPubMed
Mackenzie, B, Ujwal, ML, Chang, MH, Romero, MF, Hediger, MA. Divalent metal-ion transporter DMT1 mediates both H+ coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch 2006; 451: 5448.CrossRefGoogle Scholar
Rahier, J, Loozen, S, Goebbels, RM, Abrahem, M. The haemochromatotic human pancreas: a quantitative immunohistochemical and ultrastructural study. Diabetologia 1987; 30: 5–12.CrossRefGoogle ScholarPubMed
Lu, JP, Hayashi, K. Selective iron deposition in pancreatic islet B cells of transfusional iron overloaded autopsy cases. Pathol Int 1994; 44: 194–9.CrossRefGoogle ScholarPubMed
Sheldon, JH. Haemochromatosis. London, Oxford University Press, 1935.Google Scholar
Peillon, F, Racadot, J.[Histopathological modification in the hypophysis in 6 cases of hemochromatosis.]Ann Endocrinol (Paris) 1969; 30: 800.Google Scholar
Bergeron, C, Kovacs, K.Pituitary siderosis. A histologic, immunocytologic, and ultrastructural study. Am J Pathol 1978; 93: 295–309.Google ScholarPubMed
Atkin, SL, Burnett, HE, Green, VL, White, MC, Lombard, M. Expression of the transferrin receptor in human anterior pituitary adenomas is confined to gonadotrophinomas. Clin Endocrinol (Oxf) 1996; 44: 4671.CrossRefGoogle ScholarPubMed
Tampanaru-Sarmesiu, A, Stefaneanu, L, Thapar, K, Kontogeorgos, G, Sumi, T, Kovacs, K. Transferrin and transferrin receptor in human hypophysis and pituitary adenomas. Am J Pathol 1998; 152: 413–22.Google ScholarPubMed
McDermott, JH, Walsh, CH. Hypogonadism in hereditary hemochromatosis. J Clin Endocrinol Metab 2005; 90: 2451.CrossRefGoogle ScholarPubMed
Barton, JC, Bertoli, LF, Rothenberg, BE. Peripheral blood erythrocyte parameters in hemochromatosis: evidence for increased erythrocyte hemoglobin content. J Lab Clin Med 2000; 135: 96–104.CrossRefGoogle ScholarPubMed
Beutler, E, Felitti, V, Gelbart, T, Ho, N. The effect of HFE genotypes on measurements of iron overload in patients attending a health appraisal clinic. Ann Intern Med 2000; 133: 329–37.CrossRefGoogle ScholarPubMed
McLaren, CE, Barton, JC, Gordeuk, VR, et al. Determinants and characteristics of mean corpuscular volume and hemoglobin concentration in white HFE C282Y homozygotes in the hemochromatosis and iron overload screening study. Am J Hematol 2007; 82: 898–905.CrossRefGoogle Scholar
Feeney, GP, Carter, K, Masters, GS, Jackson, HA, Cavil, I, Worwood, M. Changes in erythropoiesis in hereditary hemochromatosis are not mediated by HFE expression in nucleated red cells. Haematologica 2005; 90: 180.Google Scholar
Lin, JP, O'Donnell, CJ, Jin, L, Fox, C, Yang, Q, Cupples, . Evidence for linkage of red blood cell size and count: genome-wide scans in the Framingham Heart Study. Am J Hematol 2007; 82: 605–10.CrossRefGoogle ScholarPubMed
Kozewski, BJ. The occurrence of megaloblastic erythropoiesis in patients with hemochromatosis. Blood 1952; 7: 1182–95.Google Scholar
Quigley, JG, Yang, Z, Worthington, MT, et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell 2004; 118: 757–66.CrossRefGoogle ScholarPubMed
Keel, SB, Doty, RT, Yang, Z, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 2008; 319: 825–8.CrossRefGoogle ScholarPubMed
Gehrke, SG, Kulaksiz, H, Herrmann, T, et al. Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to the serum transferrin saturation and to non-transferrin-bound iron. Blood 2003; 102: 371–6.CrossRefGoogle ScholarPubMed
Piperno, A, Girelli, D, Nemeth, E, et al. Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis. Blood 2007; 110: 4096–100.CrossRefGoogle ScholarPubMed
Ganz, T. Iron homeostasis: fitting the puzzle pieces together. Cell Metab 2008; 7: 288–90.CrossRefGoogle ScholarPubMed
Tanno, T, Bhanu, NV, Oneal, PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 2007; 13: 1096–101.CrossRefGoogle ScholarPubMed
Mast, AE, Foster, TM, Pinder, HL, et al. Behavioral, biochemical, and genetic analysis of iron metabolism in high-intensity blood donors. Transfusion 2008; 48: 2197–204.CrossRefGoogle ScholarPubMed
Lee, PL, Gelbart, T, West, C, Halloran, C, Felitti, V, Beutler, E. A study of genes that may modulate the expression of hereditary hemochromatosis: transferrin receptor-1, ferroportin, ceruloplasmin, ferritin light and heavy chains, iron regulatory proteins (IRP)-1 and -2, and hepcidin. Blood Cells Mol Dis 2001; 27: 783–802.CrossRefGoogle ScholarPubMed
Hofmann, WK, Tong, XJ, Ajioka, RS, Kushner, JP, Koeffler, HP. Mutation analysis of transferrin-receptor 2 in patients with atypical hemochromatosis. Blood 2002; 100: 1099–100.CrossRefGoogle ScholarPubMed
Lee, P, Gelbart, T, West, C, Halloran, C, Beutler, E. Seeking candidate mutations that affect iron homeostasis. Blood Cells Mol Dis 2002; 29: 471–87.CrossRefGoogle ScholarPubMed
Kelleher, T, Ryan, E, Barrett, S, O'Keane, C, Crowe, J. DMT1 genetic variability is not responsible for phenotype variability in hereditary hemochromatosis. Blood Cells Mol Dis 2004; 33: 35–9.CrossRefGoogle Scholar
Lee, PL, Barton, JC, Brandhagen, D, Beutler, E. Hemojuvelin (HJV) mutations in persons of European, African-American and Asian ancestry with adult onset haemochromatosis. Br J Haematol 2004; 127: 224–9.CrossRefGoogle ScholarPubMed
Gac, G, Scotet, V, Ka, C, et al. The recently identified type 2A juvenile haemochromatosis gene (HJV), a second candidate modifier of the C282Y homozygous phenotype. Hum Mol Genet 2004; 13: 1913–18.CrossRefGoogle Scholar
Mura, C, Gac, G, Scotet, V, Raguenes, O, Mercier, AY, Ferec, C. Variation of iron loading expression in C282Y homozygous haemochromatosis probands and sib pairs. J Med Genet 2001; 38: 632–6.CrossRefGoogle ScholarPubMed
Barton, JC, Wiener, HW, Acton, RT, Go, RC. HLA haplotype A*03-B*07 in hemochromatosis probands with HFE C282Y homozygosity: frequency disparity in men and women and lack of association with severity of iron overload. Blood Cells Mol Dis 2005; 34: 38–47.CrossRefGoogle ScholarPubMed
Olatunbosun, D, Corbett, WE, Ludwig, J, Valberg, LS. Alteration of cobalt absorption in portal cirrhosis and idiopathic hemochromatosis. J Lab Clin Med 1970; 75: 754–62.Google ScholarPubMed
Akesson, A, Stal, P, Vahter, M. Phlebotomy increases cadmium uptake in hemochromatosis. Environ Health Perspect 2000; 108: 289–91.CrossRefGoogle ScholarPubMed
Barton, JC, Patton, MA, Edwards, CQ, et al. Blood lead concentrations in hereditary hemochromatosis. J Lab Clin Med 1994; 124: 193–8.Google ScholarPubMed
Barton, JC. The absorption and metabolism of non-ferrous metals in hemochromatosis. In: Barton, JC, Edwards, CQ, eds. Hemochromatosis: Genetics, Pathophysiology, Diagnosis and Treatment. Cambridge, Cambridge University Press. 2000; 131–44.CrossRefGoogle Scholar
Pietrangelo, A, Rocchi, E, Casalgrandi, G, et al. Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum. Gastroenterology 1992; 102: 802–9.CrossRefGoogle ScholarPubMed
Feder, JN, Penny, DM, Irrinki, A, et al. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 1998; 95: 1472.CrossRefGoogle ScholarPubMed
Altstatt, LB, Pollack, S, Feldman, MH, Reba, RC, Crosby, WH. Liver manganese in hemochromatosis. Proc Soc Exp Biol Med 1967; 124: 353.CrossRefGoogle ScholarPubMed
Adams, PC, Bradley, C, Frei, JV. Hepatic zinc in hemochromatosis. Clin Invest Med 1991; 14: 16–20.Google ScholarPubMed
Brissot, P, Treut, A, Dien, G, Cottencin, M, Simon, M, Bourel, M. Hypovitaminemia A in idiopathic hemochromatosis and hepatic cirrhosis. Role of retinol-binding protein and zinc. Digestion 1978; 17: 4698.CrossRefGoogle ScholarPubMed
Sargent, T, Lim, TH, Jenson, RL. Reduced chromium retention in patients with hemochromatosis, a possible basis of hemochromatotic diabetes. Metabolism 1979; 28: 70–9.CrossRefGoogle ScholarPubMed
Spencer, H, Sontag, SJ, Derler, J, Osis, D. Intestinal absorption of iron in patients with hemochromatosis. In: Weintraub, LR, Edwards, CQ, Krikker, M, eds. Hemochromatosis. Proceedings of the First International Conference. New York, The New York Academy of Sciences. 1988; 336–8.Google Scholar
Barton, JC, Bertoli, LF. Zinc gluconate lozenges for treating the common cold. Ann Intern Med 1997; 126: 738–9.CrossRefGoogle ScholarPubMed
Walshe, JM, Cox, DW. Effect of treatment of Wilson's disease on natural history of haemochromatosis. Lancet 1998; 352: 112–13.CrossRefGoogle ScholarPubMed
Dib, N, Valsesia, E, Malinge, MC, Mauras, Y, Misrahi, M, Cales, P. Late onset of Wilson's disease in a family with genetic haemochromatosis. Eur J Gastroenterol Hepatol 2006; 18: 43.CrossRefGoogle Scholar
Onalaja, AO, Claudio, L. Genetic susceptibility to lead poisoning. Environ Health Perspect 2000; 108 Suppl 1: 23–8.CrossRefGoogle ScholarPubMed
Mandelli, C, Cesarini, L, Piperno, A, et al. Saturability of hepatic iron deposits in genetic hemochromatosis. Hepatology 1992; 16: 956–9.CrossRefGoogle ScholarPubMed
Niederau, C, Fischer, R, Sonnenberg, A, Stremmel, W, Trampisch, HJ, Strohmeyer, G. Survival and causes of death in cirrhotic and in non-cirrhotic patients with primary hemochromatosis. N Engl J Med 1985; 313: 1256–62.CrossRefGoogle Scholar
Wood, MJ, Powell, LW, Ramm, GA. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood 2008; 111: 4456–62.CrossRefGoogle ScholarPubMed
Adams, PC, Reboussin, DM, Barton, JC, et al. Hemochromatosis and iron overload screening in a racially diverse population. N Engl J Med 2005; 352: 17698.CrossRefGoogle Scholar
Edwards, CQ, Griffen, LM, Goldgar, D, Drummond, C, Skolnick, MH, Kushner, JP. Prevalence of hemochromatosis among 11,065 presumably healthy blood donors. N Engl J Med 1988; 318: 1355–62.CrossRefGoogle ScholarPubMed
Bulaj, ZJ, Ajioka, RS, Phillips, JD, et al. Disease-related conditions in relatives of patients with hemochromatosis. N Engl J Med 2000; 343: 1529–35.CrossRefGoogle ScholarPubMed
McLaren, GD, McLaren, CE, Adams, PC, et al. Clinical manifestations of hemochromatosis in HFE C282Y homozygotes identified by screening. Can J Gastroenterol 2008; 22: 923–30.CrossRefGoogle ScholarPubMed
Adams, PC. Non-expressing homozygotes for C282Y hemochromatosis: minority or majority of cases?Mol Genet Metab 2000; 71: 81–6.CrossRefGoogle ScholarPubMed
Barton, JC, Harmon, L, Rivers, C, Acton, RT. Hemochromatosis: association of severity of iron overload with genetic markers. Blood Cells Mol Dis 1996; 22: 195–204.CrossRefGoogle ScholarPubMed
Pratiwi, R, Fletcher, LM, Pyper, WR, et al. Linkage disequilibrium analysis in Australian haemochromatosis patients indicates bipartite association with clinical expression. J Hepatol 1999; 31: 39–46.CrossRefGoogle ScholarPubMed
Piperno, A, Arosio, C, Fargion, S, et al. The ancestral hemochromatosis haplotype is associated with a severe phenotype expression in Italian patients. Hepatology 1996; 24: 43–6.CrossRefGoogle ScholarPubMed
Barton, JC, Wiener, HW, Acton, RT, Go, RC. HLA haplotype A*03-B*07 in hemochromatosis probands with HFE C282Y homozygosity: frequency disparity in men and women and lack of association with severity of iron overload. Blood Cells Mol Dis 2005; 34: 38–47.CrossRefGoogle ScholarPubMed
Cartwright, GE, Edwards, CQ, Kravitz, K, et al. Hereditary hemochromatosis. Phenotypic expression of the disease. N Engl J Med 1979; 301: 175–9.CrossRefGoogle ScholarPubMed
Pietrangelo, A. Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 2004; 350: 2383–97.CrossRefGoogle Scholar
Barton, JC, Sawada-Hirai, R, Rothenberg, BE, Acton, RT. Two novel missense mutations of the HFE gene (I105T and G93R) and identification of the S65C mutation in Alabama hemochromatosis probands. Blood Cells Mol Dis 1999; 25: 1475.CrossRefGoogle ScholarPubMed
Beutler, E, Gelbart, T, West, C, et al. Mutation analysis in hereditary hemochromatosis. Blood Cells Mol Dis 1996; 22: 187–94.CrossRefGoogle ScholarPubMed
Marshall, DS, Linfert, DR, Tsongalis, GJ. Prevalence of the C282Y and H63D polymorphisms in a multi-ethnic control population. Int J Mol Med 1999; 4: 389–93.Google Scholar
Bradley, , Johnson, DD, Palomaki, GE, Haddow, JE, Robertson, NH, Ferrie, RM. Hereditary haemochromatosis mutation frequencies in the general population. J Med Screen 1998; 5: 34–6.CrossRefGoogle ScholarPubMed
McDonnell, SM, Hover, A, Gloe, D, Ou, CY, Cogswell, ME, Grummer-Strawn, L. Population-based screening for hemochromatosis using phenotypic and DNA testing among employees of health maintenance organizations in Springfield, Missouri. Am J Med 1999; 107: 30.CrossRefGoogle ScholarPubMed
Garry, PJ, Montoya, GD, Baumgartner, RN, Liang, HC, Williams, TM, Brodie, SG. Impact of HLA-H mutations on iron stores in healthy elderly men and women. Blood Cells Mol Dis 1997; 23: 277–87.CrossRefGoogle ScholarPubMed
Monaghan, KG, Rybicki, BA, Shurafa, M, Feldman, GL. Mutation analysis of the HFE gene associated with hereditary hemochromatosis in African-American(s). Am J Hematol 1998; 58: 213–17.3.0.CO;2-U>CrossRefGoogle Scholar
A simple genetic test identifies 90% of UK patients with haemochromatosis. The UK Haemochromatosis Consortium. Gut 1997; 41: 841–4.
Willis, G, Jennings, BA, Goodman, E, Fellows, IW, Wimperis, JZ. A high prevalence of HLA-H 845A mutations in hemochromatosis patients and the normal population in eastern England. Blood Cells Mol Dis 1997; 23: 288–91.CrossRefGoogle ScholarPubMed
Murphy, S, Curran, MD, McDougall, N, Callender, ME, O'Brien, CJ, Middleton, D. High incidence of the Cys282Tyr mutation in the HFE gene in the Irish population—implications for haemochromatosis. Tissue Antigens 1998; 52: 484–8.CrossRefGoogle Scholar
Ryan, E, O'Keane, C, Crowe, J. Hemochromatosis in Ireland and HFE. Blood Cells Mol Dis 1998; 24: 428–32.CrossRefGoogle ScholarPubMed
Miedzybrodzka, Z, Loughlin, S, Baty, D, et al. Haemochromatosis mutations in northeast Scotland. Br J Haematol 1999; 106: 385.CrossRefGoogle Scholar
Jazwinska, EC, Cullen, LM, Busfield, F, et al. Haemochromatosis and HLA-H. Nat Genet 1996; 14: 2491.CrossRefGoogle ScholarPubMed
Rossi, E, Henderson, S, Chin, CY, et al. Genotyping as a diagnostic aid in genetic haemochromatosis. J Gastroenterol Hepatol 1999; 14: 427–30.CrossRefGoogle ScholarPubMed
Adams, PC, Chakrabarti, S. Genotypic/phenotypic correlations in genetic hemochromatosis: evolution of diagnostic criteria. Gastroenterology 1998; 114: 319–23.CrossRefGoogle ScholarPubMed
Milman, N, Koefoed, P, Pedersen, P, Nielsen, FC, Eiberg, H. Frequency of the HFE C282Y and H63D mutations in Danish patients with clinical haemochromatosis initially diagnosed by phenotypic methods. Eur J Haematol 2003; 71: 403.CrossRefGoogle ScholarPubMed
Erhardt, A, Niederau, C, Osman, Y, Hassan, M, Haussinger, D. [Demonstration of HFE polymorphism in German patients with hereditary hemochromatosis.]Dtsch Med Wochenschr 1999; 124: 14482.CrossRefGoogle Scholar
Gottschalk, R, Seidl, C, Schilling, S, et al. Iron overload and genotypic expression of HFE mutations H63D/C282Y and transferrin receptor Hin6I and BanI polymorphism in German patients with hereditary haemochromatosis. Eur J Immunogenet 2000; 27: 129–34.CrossRefGoogle ScholarPubMed
Hellerbrand, C, Bosserhoff, AK, Seegers, S, et al. Mutation analysis of the HFE gene in German hemochromatosis patients and controls using automated SSCP-based capillary electrophoresis and a new PCR-ELISA technique. Scand J Gastroenterol 2001; 36: 1211–16.CrossRefGoogle Scholar
Nielsen, P, Carpinteiro, S, Fischer, R, Cabeda, JM, Porto, G, Gabbe, EE. Prevalence of the C282Y and H63D mutations in the HFE gene in patients with hereditary haemochromatosis and in control subjects from northern Germany. Br J Haematol 1998; 103: 842.CrossRefGoogle ScholarPubMed
Vlierberghe, H, Messiaen, L, Hautekeete, M, Paepe, A, Elewaut, A. Prevalence of the Cys282Tyr and His63Asp mutation in Flemish patients with hereditary hemochromatosis. Acta Gastroenterol Belg 2000; 63: 250–3.Google ScholarPubMed
Juan, D, Reta, A, Castiella, A, Pozueta, J, Prada, A, Cuadrado, E. HFE gene mutations analysis in Basque hereditary haemochromatosis patients and controls. Eur J Hum Genet 2001; 9: 961–4.CrossRefGoogle ScholarPubMed
Guix, P, Picornell, A, Parera, M, et al. Prevalence of the C282Y mutation for haemochromatosis on the Island of Majorca. Clin Genet 2000; 58: 123–8.CrossRefGoogle ScholarPubMed
Sanchez, M, Bruguera, M, Quintero, E, et al. Hereditary hemochromatosis in Spain. Genet Test 2000; 4: 171–6.CrossRefGoogle ScholarPubMed
Fabrega, E, Castro, B, Sanchez-Castro, L, Benito, A, Fernandez-Luna, JL, Pons-Romero, F.[The prevalence of the Cys282Tyr mutation in the hemochromatosis gene in Cantabria in patients diagnosed with hereditary hemochromatosis.]Med Clin (Barc) 1999; 112: 451–3.Google Scholar
Sanchez, M, Bruguera, M, Bosch, J, Rodes, J, Ballesta, F, Oliva, R. Prevalence of the Cys282Tyr and His63Asp HFE gene mutations in Spanish patients with hereditary hemochromatosis and in controls. J Hepatol 1998; 29: 725–8.CrossRefGoogle ScholarPubMed
Moreno, L, Vallcorba, P, Boixeda, D, Cabello, P, Bermejo, F, San Roman, C.[The usefulness of the detection of Cys282Tyr and His63Asp mutations in the diagnosis of hereditary hemochromatosis.]Rev Clin Esp 1999; 199: 632–6.Google Scholar
Jorquera, F, Dominguez, A, Diaz-Golpe, V, et al. C282Y and H63D mutations of the haemochromatosis gene in patients with iron overload. Rev Esp Enferm Dig 2001; 93: 293–302.Google ScholarPubMed
Jouanolle, AM, Fergelot, P, Gandon, G, Yaouanq, J, Gall, JY, David, V. A candidate gene for hemochromatosis: frequency of the C282Y and H63D mutations. Hum Genet 1997; 100: 544.CrossRefGoogle ScholarPubMed
Mura, C, Raguenes, O, Ferec, C. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood 1999; 93: 2502.Google ScholarPubMed
Aguilar-Martinez, P, Biron, C, Blanc, F, et al. Compound heterozygotes for hemochromatosis gene mutations: may they help to understand the pathophysiology of the disease?Blood Cells Mol Dis 1997; 23: 2696.CrossRefGoogle ScholarPubMed
Borot, N, Roth, M, Malfroy, L, et al. Mutations in the MHC class I-like candidate gene for hemochromatosis in French patients. Immunogenetics 1997; 45: 320–4.CrossRefGoogle ScholarPubMed
Mercier, G, Burckel, A, Bathelier, C, Boillat, E, Lucotte, G. Mutation analysis of the HLA-H gene in French hemochromatosis patients, and genetic counseling in families. Genet Couns 1998; 9: 181–6.Google ScholarPubMed
Cardoso, EM, Stal, P, Hagen, K, et al. HFE mutations in patients with hereditary haemochromatosis in Sweden. J Intern Med 1998; 243: 203–8.CrossRefGoogle ScholarPubMed
Olsson, KS, Ritter, B, Sandberg, L, Raha-Chowdhury, R, Gruen, J, Worwood, M. The ancestral haplotype in patients with genetic hemochromatosis from central and western Sweden. 1997. St. Malo, International Symposium on Iron in Biology and Medicine.Google Scholar
Calandro, L, Thorsen, T, Barcellos, L, Griggs, J, Baer, D, Sensabaugh, GF. Mutation analysis in hereditary hemochromatosis. Blood Cells Mol Dis 1996; 22: 194A–4B.Google Scholar
Sham, RL, Ou, CY, Cappuccio, J, Braggins, C, Dunnigan, K, Phatak, PD. Correlation between genotype and phenotype in hereditary hemochromatosis: analysis of 61 cases. Blood Cells Mol Dis 1997; 23: 314–20.CrossRefGoogle ScholarPubMed
Brandhagen, DJ, Fairbanks, VF, Baldus, WP, et al. Prevalence and clinical significance of HFE gene mutations in patients with iron overload. Am J Gastroenterol 2000; 95: 2910–14.CrossRefGoogle ScholarPubMed
Asberg, A, Hveem, K, Thorstensen, K, et al. Screening for hemochromatosis: high prevalence and low morbidity in an unselected population of 65 238 persons. Scand J Gastroenterol 2001; 36: 1108–15.Google Scholar
Porto, G, Sousa, M. Variation of hemochromatosis prevalence and genotype in national groups. In: Barton, JC, Edwards, CQ, eds. Hewmochromatosis; Genetics, Pathophysiology, Diagnosis and Treatment. Cambridge, Cambridge University Press. 2000; 51–62.CrossRefGoogle Scholar
Datz, C, Lalloz, MR, Vogel, W, et al. Predominance of the HLA-H Cys282Tyr mutation in Austrian patients with genetic haemochromatosis. J Hepatol 1997; 27: 773–9.CrossRefGoogle ScholarPubMed
Carella, M, D'Ambrosio, L, Totaro, A, et al. Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. Am J Hum Genet 1997; 60: 828–32.Google ScholarPubMed
Piperno, A, Sampietro, M, Pietrangelo, A, et al. Heterogeneity of hemochromatosis in Italy. Gastroenterology 1998; 114: 996–1002.CrossRefGoogle ScholarPubMed
Papanikolaou, G, Politou, M, Roetto, A, et al. Linkage to chromosome 1q in Greek families with juvenile hemochromatosis. Blood Cells Mol Dis 2001; 27: 744–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×