Book contents
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Logged rewriting and identities among relators
Published online by Cambridge University Press: 11 January 2010
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Summary
Abstract
We present a version of the Knuth-Bendix string rewriting procedures for group computations and apply it to the problem of computing the module of identities among relators. By lifting rewriting into the appropriate higher dimension we provide a methodology which is alternative and complementary to the popular geometric approach of pictures.
Introduction
Combinatorial group theory is the study of groups which are given by means of presentations; these arise naturally in a wide variety of situations including areas as diverse as knot theory [13], geometry [8] and cryptography [1]. One of the fundamental problems in computational group theory is the solution of the word problem for a given presentation. The problem is in general undecidable and consequently a number of different approaches have been developed. Amongst the most successful is string rewriting, in particular Knuth-Bendix completion, which attempts to solve the word problem by trying to generate a confluent and Noetherian rewrite system from the presentation. The advantages of this approach are twofold: i) Knuth-Bendix completion can be successfully applied in a large number of situations and; ii) the concrete nature of string rewriting makes these algorithms relatively easy to implement. Indeed, many computer algebra packages solve word problems in precisely this way [11, 18].
Every presentation has associated with it a CW-complex: a cellular model whose fundamental group is the group given by the presentation. The second homotopy group of the CW-complex is the module of identities among relators.
- Type
- Chapter
- Information
- Groups St Andrews 2001 in Oxford , pp. 256 - 276Publisher: Cambridge University PressPrint publication year: 2003
- 1
- Cited by