Published online by Cambridge University Press: 11 January 2010
Abstract
Recently, algorithmic approaches to construct and investigate almost crystallographic groups and a library of almost crystallographic groups of small Hirsch length have been made available in the Aclib package of Gap. Here we present a survey of these methods and we illustrate a variety of their applications.
Introduction
Almost crystallographic groups have first been discussed in the theory of actions on connected and simply connected nilpotent Lie groups L. In this setting L ⋊ Aut(L) acts affinely on L via l(m,α) = lα · m for l,m ∈ L and α ∈ Aut(L). If C is a maximal compact subgroup of Aut(L), then a subgroup G of L⋊C is almost crystallographic if the action of G on L is properly discontinuous and the quotient space L/G is compact. Almost crystallographic groups can also be characterized as those finitely generated nilpotent-by-finite groups whose normal torsion subgroup is trivial. One of the most fundamental observations on almost crystallographic groups is that for a given finitely generated torsion-free nilpotent group N there exist only finitely many almost crystallographic groups having N as Fitting subgroup. This property can be used as a basis for a classification of almost crystallographic groups. In fact, in [2] this approach has been exploited to determine a library of almost crystallographic groups of Hirsch length at most 4. Recently, this library of almost crystallographic groups has been made available in electronic form in the package Aclib [3] of the computer algebra system Gap [20].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.