Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:26:33.920Z Has data issue: false hasContentIssue false

1 - Topics in representation theory of finite groups

Published online by Cambridge University Press:  11 May 2024

R. A. Bailey
Affiliation:
University of St Andrews, Scotland
Peter J. Cameron
Affiliation:
University of St Andrews, Scotland
Yaokun Wu
Affiliation:
Shanghai Jiao Tong University, China
Get access

Summary

This is an introduction to representation theory and harmonic analysis on finite groups. This includes, in particular, Gelfand pairs (with applications to diffusion processes à la Diaconis) and induced representations (focusing on the little group method of Mackey and Wigner). We also discuss Laplace operators and spectral theory of finite regular graphs. In the last part, we present the representation theory of GL(2, Fq), the general linear group of invertible 2 × 2 matrices with coefficients in a finite field with q elements. More precisely, we revisit the classical Gelfand–Graev representation of GL(2, Fq) in terms of the so-called multiplicity-free triples and their associated Hecke algebras. The presentation is not fully self-contained: most of the basic and elementary facts are proved in detail, some others are left as exercises, while, for more advanced results with no proof, precise references are provided.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alperin, J. L. and Bell, R. B., Groups and Representations, Graduate Texts in Mathematics, 162. Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
Bailey, R. A., Association Schemes: Designed Experiments, Algebra and Combinatorics. Cambridge Studies in Advanced Mathematics 84, Cambridge University Press, 2004.CrossRefGoogle Scholar
Bannai, E. and Ito, T., Algebraic Combinatorics, Benjamin, Menlo Park, CA, 1984.Google Scholar
Bannai, E., Bannai, E., Ito, T. and Tanaka, R., Algebraic Combinatorics, De Gruyter Series in Discrete Mathematics and Applications volume 5, De Gruyter 2021.CrossRefGoogle Scholar
Bartholdi, L. and Grigorchuk, R. I., On parabolic subgroups and Hecke algebras of some fractal groups. Serdica Math. J. 28 (2002), no. 1, 47–90.Google Scholar
Bogart, K. P., An obvious proof of Burnside’s lemma, Amer. Math. Monthly 98 (1991), no. 10, 927–928.Google Scholar
Borodin, A. and Olshanski, G., Representations of the Infinite Symmetric Group. Cambridge Studies in Advanced Mathematics, 160. Cambridge University Press, Cambridge, 2017.Google Scholar
Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-Regular Graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18. Springer-Verlag, Berlin, 1989.CrossRefGoogle Scholar
Bump, D. and Ginzburg, D., Generalized Frobenius–Schur numbers, J. Algebra 278 (2004), no. 1, 294–313.Google Scholar
Burnside, W., Theory of Groups of Finite Order, Cambridge University Press, 1897.Google Scholar
Cameron, P. J., Permutation Groups. London Mathematical Society Student Texts, 45. Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Cameron, P. J. and van Lint, J. H., Designs, Graphs, Codes and their Links. London Mathematical Society Student Texts, 22. Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Trees, wreath products and finite Gelfand pairs, Adv. Math., 206 (2006), no. 2, 503–537.Google Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Finite Gelfand pairs and their applications to probability and statistics, J. Math. Sci. (N.Y.) 141 (2007), no. 2, 1182–1229.Google Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains. Cambridge Studies in Advanced Mathematics 108, Cambridge University Press, Cambridge, 2008.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Representation Theory of the Symmetric Groups: the Okounkov–Vershik Approach, Character Formulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics 121, Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Machí, A., Scarabotti, F. and Tolli, F., Induced representations and Mackey theory. Functional analysis. J. Math. Sci. (N.Y.) 156 (2009), no. 1, 11–28.Google Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups, London Mathematical Society Lecture Note Series 410, Cambridge University Press, Cambridge, 2014.Google Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Discrete Harmonic Analysis: Representations, Number Theory, Expanders, and the Fourier Transform. Cambridge Studies in Advanced Mathematics, 172, Cambridge University Press, Cambridge, 2018.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Gelfand Triples and their Hecke Algebras — harmonic analysis for multiplicity-free induced representations of finite groups. With a foreword by Eiichi Bannai, Lecture Notes in Mathematics 2267, Springer, Cham, 2020.Google Scholar
Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Representation theory of finite group extensions. Clifford theory, Mackey obstruction, and the orbit method, Springer Monographs in Mathematics, Springer, Cham, 2022.Google Scholar
Corsini, P. and Leoreanu, V., Applications of Hyperstructure Theory, Springer, 2003.CrossRefGoogle Scholar
D’Angeli, D. and Donno, A., Self-similar groups and finite Gelfand pairs, Algebra Discrete Math. (2007), no. 2, 5469.Google Scholar
D’Angeli, D. and Donno, A., A group of automorphisms of the rooted dyadic tree and associated Gelfand pairs, Rend. Semin. Mat. Univ. Padova 121 (2009), 7392.CrossRefGoogle Scholar
Ph. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973).Google Scholar
Diaconis, P., Group Representations in Probability and Statistics. IMS Hayward, CA, 1988.CrossRefGoogle Scholar
Diaconis, P. and Shahshahani, M., Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Geb., 57 (1981), 159179.CrossRefGoogle Scholar
Diaconis, P. and Shahshahani, M., Time to reach stationarity in the Bernoulli– Laplace diffusion model, SIAM J. Math. Anal. 18 (1987), no. 1, 208–218.Google Scholar
Dieudonné, J., Treatise on Analysis Vol. VI. Pure and Applied Mathematics, 10-VI. Academic Press, Inc. New York-London, 1978.Google Scholar
Dunkl, Ch. F., The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331348.CrossRefGoogle Scholar
Ch. F. Dunkl, Structure hypergroups for measure algebras, Pacific J. Math. 47 (1973), 413–425.CrossRefGoogle Scholar
Dunkl, Ch. F., Spherical functions on compact groups and applications to special functions. Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976), pp. 145–161. Academic Press, London, 1977.Google Scholar
Dunkl, Ch. F., Orthogonal functions on some permutation groups, Proc. Symp. Pure Math. 34, Amer. Math. Soc., Providence, RI, (1979), 129–147.Google Scholar
Dym, H. and McKean, H. P., Fourier Series and Integrals, Probability and Mathematical Statistics, No. 14. Academic Press, New York-London, 1972.Google Scholar
Ehrenfest, P. and Ehrenfest, T., Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Physikalische Zeitschrift 8 (1907), 311–314.Google Scholar
Faraut, J., Analyse harmonique sur les paires de Guelfand et les espaces hy-perboliques, CIMPA lecture notes (1980).Google Scholar
Figà-Talamanca, A., Note del Seminario di Analisi Armonica, A.A. 1990–91, Università di Roma “La Sapienza”.Google Scholar
Figà-Talamanca, A. and Nebbia, C., Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees, London Mathematical Society Lecture Note Series 162. Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
Fulton, W. and Harris, J., Representation Theory. A First Course, Springer-Verlag, New York, 1991.Google Scholar
Gelfand, I. M., Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR (N.S.) 70, (1950); [Collected papers, Vol. II, Springer (1988) 31–35].Google Scholar
Godsil, C. D., Algebraic Combinatorics. Chapman and Hall Mathematics Series. Chapman & Hall, New York, 1993.Google Scholar
Godsil, C. and Royle, G., Algebraic Graph Theory. Graduate Texts in Mathematics 207, Springer-Verlag, New York, 2001.CrossRefGoogle Scholar
Grigorchuk, R. I., Just infinite branch groups, in New Horizons in Pro-p Groups (ed. de Sautoy, Marcus, Segal, Dan and Shalev, Aner), 121–179, Progr. Math. 184, Birkhäuser Boston, Boston, MA, 2000.Google Scholar
Helgason, S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions. Mathematical Surveys and Monographs, 83. American Mathematical Society, Providence, RI, 2000.CrossRefGoogle Scholar
Holton, D. A. and Sheehan, J., The Petersen Graph. Australian Mathematical Society Lecture Series 7, Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
Isaacs, I. M., Character Theory of Finite Groups, Corrected reprint of the 1976 original [Academic Press, New York]. Dover Publications, Inc., New York, 1994.Google Scholar
Jerrum, M. R., Computational Pólya theory, in Surveys in Combinatorics, 1995 (Rowlinson, P., ed.), London Math. Soc. Lecture Notes 218, Cambridge University Press, Cambridge, 1995, pp. 103–118.Google Scholar
Jewett, R. J., Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101.Google Scholar
van Lint, J. H. and Wilson, R.M., A Course in Combinatorics. Second edition. Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Macdonald, I. G., Symmetric Functions and Hall Polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.CrossRefGoogle Scholar
MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, Vol. I and II. North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.Google Scholar
Naimark, M. A. and Stern, A. I., Theory of Group Representations, Springer-Verlag, New York, 1982.CrossRefGoogle Scholar
Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
Neumann, P. M., A lemma that is not Burnside’s, Math. Sci. 4 (1979), no. 2, 133–141.Google Scholar
Okounkov, A. and Vershik, A. M., A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2 (1996), no. 4, 581–605.Google Scholar
Peter, F. and Weyl, H., Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann., 97 (1927), 737755.Google Scholar
Piatetski-Shapiro, I. I., Complex Representations of GL(2,K) for Finite Fields K. Contemporary Mathematics, 16. American Mathematical Society, Providence, R.I., 1983.Google Scholar
Reed, M. and Simon, B., Methods of Modern Mathematical Physics. II. Fourier Analysis and Self-Adjointness. Academic Press [Harcourt Brace Jo-vanovich, Publishers], New York-London, 1975.Google Scholar
Saxl, J., On multiplicity-free permutation representations, in Finite Geometries and Designs (ed. Cameron, P. J., Hrschfeld, J. W. P. and Hughes, D. R.), pp. 337–353, London Math. Soc. Lecture Notes Series, 49, Cambridge University Press, 1981.Google Scholar
Scarabotti, F., Time to reach stationarity in the Bernoulli-Laplace diffusion model with many urns, Adv. in Appl. Math. 18 (1997), no. 3, 351–371.Google Scholar
Scarabotti, F. and Tolli, F., Harmonic analysis on a finite homogeneous space, Proc. Lond. Math. Soc.(3) 100 (2010), no. 2, 348–376.Google Scholar
Scarabotti, F. and Tolli, F., Fourier analysis of subgroup-conjugacy invariant functions on finite groups, Monatsh. Math. 170 (2013), 465479.CrossRefGoogle Scholar
Scarabotti, F. and Tolli, F., Hecke algebras and harmonic analysis on finite groups, Rend. Mat. Appl. (7) 33 (2013), no. 1-2, 27–51.Google Scholar
Scarabotti, F. and Tolli, F., Induced representations and harmonic analysis on finite groups, Monatsh. Math. 181 (2016), no. 4, 937–965.Google Scholar
Serre, J. P., Linear Representations of Finite Groups, Graduate Texts in Mathematics 42. Springer-Verlag, New York-Heidelberg, 1977.CrossRefGoogle Scholar
Simon, B., Representations of Finite and Compact Groups, American Math. Soc., 1996.Google Scholar
Stanton, D., An introduction to group representations and orthogonal polynomials, in Orthogonal Polynomials (Nevai, P. Ed.), 419–433, Kluwer Academic Dordrecht, 1990.CrossRefGoogle Scholar
Sternberg, S., Group Theory and Physics, Cambridge University Press, Cambridge, 1994.Google Scholar
Terras, A., Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts 43. Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Wielandt, H., Finite Permutation Groups, Academic Press, New York-London, 1964.Google Scholar
Wolf, J., Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs 142. American Mathematical Society, Providence, RI, 2007.CrossRefGoogle Scholar
Wright, E. M., Burnside’s lemma: a historical note, J. Comb. Theory (B), 30 (1981), 8990.CrossRefGoogle Scholar
Zieschang, P.-H., Theory of Association Schemes, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×