Published online by Cambridge University Press: 07 September 2010
As shown in the previous chapters, efficient methods for two-dimensional free-surface flows can be derived by using the theory of analytic functions. In particular, free streamline problems, series truncation methods and boundary integral equation methods based on the Cauchy integral formula can be used to obtain highly accurate solutions. Unfortunately such techniques are not available for three-dimensional free-surface flows. However, as we shall see in this chapter, boundary integral equation methods can still be derived using Green's theorem.
Boundary integral equation methods based on Green's theorem can also be used for two-dimensional free-surface flows as an alternative to methods based on the Cauchy integral formula. We first show this for twodimensional free-surface flows generated by moving disturbances in water of infinite depth. Gravity is included in the dynamic boundary condition but surface tension is neglected.
Green's function formulation for two-dimensional problems
We describe the numerical method based on Green's functions by considering the free-surface flows generated by a moving pressure distribution (see Figure 4.4) or by a moving surface-piercing object (see Figure 4.3). We will assume that the water is of infinite depth. The corresponding method based on the Cauchy theorem was described in Chapter 7 for a moving pressure distribution.
Pressure distribution
We consider the two-dimensional free-surface flow generated by a pressure distribution moving at a constant velocity U at the surface of a fluid of infinite depth.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.