Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T22:28:10.622Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2016

Nima Arkani-Hamed
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Jacob Bourjaily
Affiliation:
University of Copenhagen
Freddy Cachazo
Affiliation:
Perimeter Institute for Theoretical Physics, Ontario
Alexander Goncharov
Affiliation:
Yale University, Connecticut
Alexander Postnikov
Affiliation:
Massachusetts Institute of Technology
Jaroslav Trnka
Affiliation:
California Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, A. B., Goncharov, A., Postnikov, et al., “Scattering Amplitudes and the Positive Grassmannian,” arXiv:1212.5605 [hep-th].
[2] S., Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, 1995.
[3] N., Seiberg and E., Witten, “Electric-Magnetic Duality, Monopole Condensation, and Confinement in N =2 Supersymmetric Yang–Mills Theory,” Nucl. Phys. B426 (1994) 19–52, arXiv:hep-th/9407087.Google Scholar
[4] N., Seiberg, “Electric-Magnetic Duality in Supersymmetric non-Abelian Gauge Theories,” Nucl. Phys. B435 (1995) 129–146, arXiv:hep-th/9411149.Google Scholar
[5] A., Kapustin and E., Witten, “Electric-Magnetic Duality And The Geometric Langlands Program,” Commun. Num. Theor. Phys. 1 (2007) 1–236, arXiv:hep-th/0604151.Google Scholar
[6] J. M., Maldacena, “The Large-N Limit of Superconformal Field Theories and Supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.Google Scholar
[7] M. L., Mangano and S. J., Parke, “Multiparton Amplitudes in Gauge Theories,” Phys. Rept. 200 (1991) 301–367, arXiv:hep-th/0509223.Google Scholar
[8] L. J., Dixon, “Calculating Scattering Amplitudes Efficiently,” arXiv:hep-ph/9601359.
[9] F., Cachazo and P., Svrcek, “Lectures on Twistor Strings and Perturbative Yang–Mills Theory,” PoS RTN2005 (2005) 004, arXiv:hep-th/0504194.Google Scholar
[10] Z., Bern, L. J., Dixon, and D. A., Kosower, “On-Shell Methods in Perturbative QCD,” Annals Phys. 322 (2007) 1587–1634, arXiv:0704.2798 [hep-ph].Google Scholar
[11] B., Feng and M., Luo, “An Introduction to On-Shell Recursion Relations,” Front. Phys. 5, 7 (2011) 533–575, arXiv:1111.5759 [hep-th].Google Scholar
[12] R., Roiban, M., Spradlin, and A., Volovich, “Scattering Amplitudes in Gauge Theories: Progress and Outlook,” J. Phys. A44 (2011) no. 45, 1.Google Scholar
[13] N., Beisert, C., Ahn, L. F., Alday, Z., Bajnok, J. M., Drummond, et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].Google Scholar
[14] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, S., Caron-Huot, and J., Trnka, “The All-Loop Integrand For Scattering Amplitudes in Planar N =4 SYM,” JHEP 1101 (2011) 041, arXiv:1008.2958 [hep-th].Google Scholar
[15] N., Arkani-Hamed, F., Cachazo, C., Cheung, and J., Kaplan, “A Duality For The S-Matrix,” JHEP 1003 (2010) 020, arXiv:0907.5418 [hep-th].Google Scholar
[16] L., Mason and D., Skinner, “Dual Superconformal Invariance, Momentum Twistors and Grassmannians,” JHEP 0911 (2009) 045, arXiv:0909.0250 [hep-th].Google Scholar
[17] N., Arkani-Hamed, F., Cachazo, and C., Cheung, “The Grassmannian Origin Of Dual Superconformal Invariance,” JHEP 1003 (2010) 036, arXiv:0909.0483 [hep-th].Google Scholar
[18] J. L., Bourjaily, J., Trnka, A., Volovich, and C., Wen, “The Grassmannian and the Twistor String: Connecting All Trees in N =4 SYM,” JHEP 1101 (2011) 038, arXiv:1006.1899 [hep-th].Google Scholar
[19] J., Drummond, “Review of AdS/CFT Integrability, Chapter V.2: Dual Superconformal Symmetry,” Lett. Math. Phys. 99 (2012) 481–505, arXiv:1012.4002 [hep-th].Google Scholar
[20] A. B., Goncharov, “A Simple Construction of Grassmannian Polylogarithms,” Adv. Math. (April, 2013), arXiv:0908.2238 [math.AG].Google Scholar
[21] A. B., Goncharov, M., Spradlin, C., Vergu, and A., Volovich, “Classical Polylogarithms for Amplitudes and Wilson Loops,” Phys. Rev. Lett. 105 (2010) 151605, arXiv:1006.5703 [hep-th].Google Scholar
[22] S., Caron-Huot, “Superconformal Symmetry and Two-Loop Amplitudes in Planar N =4 Super Yang–Mills,” JHEP 1112 (2011) 066, arXiv:1105.5606 [hep-th].Google Scholar
[23] L. F., Alday, “Some Analytic Results for Two-Loop Scattering Amplitudes,” JHEP 1107 (2011) 080, arXiv:1009.1110 [hep-th].Google Scholar
[24] L. J., Dixon, J. M., Drummond, and J. M., Henn, “Bootstrapping the Three-Loop Hexagon,JHEP 1111 (2011) 023, arXiv:1108.4461 [hep-th].Google Scholar
[25] P., Heslop and V. V., Khoze, “Wilson Loops@3-Loops in Special Kinematics,” JHEP 1111 (2011) 152, arXiv:1109.0058 [hep-th].Google Scholar
[26] L. J., Dixon, J. M., Drummond, and J. M., Henn, “Analytic Result for the Two-Loop Six-Point NMHV Amplitude in N=4 Super Yang–Mills Theory,” JHEP 1201 (2012) 024, arXiv:1111.1704 [hep-th].Google Scholar
[27] J. L., Bourjaily, A., DiRe, A., Shaikh, M., Spradlin, and A., Volovich, “The Soft-Collinear Bootstrap: N = 4 Yang–Mills Amplitudes at Six and Seven Loops,” JHEP 1203 (2012) 032, arXiv:1112.6432 [hep-th].Google Scholar
[28] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “Constructing the Correlation Function of Four Stress-Tensor Multiplets and the Four-Particle Amplitude in N =4 SYM,” Nucl. Phys. B862 (2012) 450–503, arXiv:1201.5329 [hep-th].Google Scholar
[29] S., Caron-Huot and S., He, “Jumpstarting the All-Loop S-Matrix of Planar N=4 Super Yang–Mills,” JHEP 1207 (2012) 174, arXiv:1112.1060 [hep-th].Google Scholar
[30] A., Sever, P., Vieira, and T., Wang, “OPE for Super Loops,” JHEP 1111 (2011) 051, arXiv:1108.1575 [hep-th].Google Scholar
[31] A., Sever, P., Vieira, and T., Wang, “From Polygon Wilson Loops to Spin Chains and Back,” JHEP 1212 (2012) 065, arXiv:1208.0841 [hep-th].Google Scholar
[32] N., Gromov, V., Kazakov, and P., Vieira, “Exact Spectrum of Anomalous Dimensions of Planar N =4 Supersymmetric Yang–Mills Theory,” Phys. Rev. Lett. 103 (2009) 131601, arXiv:0901.3753 [hep-th].Google Scholar
[33] G., Lusztig, “Total Positivity in Partial Flag Manifolds,” Representation Theory 2 (1998) 70–78.Google Scholar
[34] G., Lusztig, “Total Positivity in Reductive Groups,” in Lie Theory and Geometry, In Honor of B. Kostant, vol. 123 of Prog. in Math., pp. 531–569. Boston: Birkhauser 1994.
[35] S., Fomin and A., Zelevinsky, “Cluster Algebras. I. Foundations,” J. Amer. Math. Soc. 15 (2002) no. 2, 497–529, arXiv:math/0104151.Google Scholar
[36] V. V., Fock and A. B., Goncharov, “Moduli Spaces of Local Systems and Higher Teichmüller Theory,” Publ.Math. IHES (2006) no. 103, 1–212, arXiv:math.AG/0311149.Google Scholar
[37] V. V., Fock and A. B., Goncharov, “Cluster Ensembles, Quantization and the Dilogarithm,” Ann. Sci. L'Ecole Norm. Sup. (2009), arXiv:math.AG/0311245.Google Scholar
[38] V. V., Fock and A. B., Goncharov, “Cluster X-Varieties, Amalgamation and Poisson–Lie Groups,” in Algebraic Geometry and Number Theory, Dedicated to Drinfeld's 50th birthday, pp. 27–68. Boston: Birkhauser 2006. arXiv:math.RT/0508408.
[39] A., Postnikov, “Total Positivity, Grassmannians, and Networks,” arXiv:math/0609764.
[40] A., Knutson, T., Lam, and D., Speyer, “Positroid Varieties: Juggling and Geometry,” Compositio Mathematica 149 (2013) no. 10, 1710–1752, arXiv:1111.3660 [math.AG].Google Scholar
[41] A. B., Goncharov and R., Kenyon, “Dimers and Cluster Integrable Systems,” Ann. Sci. L'Ecole Norm. Sup. 46 (2013) no. 4, 747–813, arXiv:1107.5588 [math.AG].Google Scholar
[42] D., Thurston, “From Dominoes to Hexagons,” arXiv:math/0405482.
[43] F., Gantmacher and M., Krein, “Sur les Matrices Oscillatores,” CR Acad. Sci. Paris 201 (1935).Google Scholar
[44] I. J., Schoenberg, “Über Variationsvermindernde Lineare Transformationen,” Math. Z. 32 (1930) 321–322.Google Scholar
[45] O., Aharony, O., Bergman, D. L., Jafferis, and J., Maldacena, “N =6 Superconformal Chern–Simons Matter Theories, M2-Branes and Their Gravity Duals,” JHEP 0810 (2008) 091, arXiv:0806.1218 [hep-th].Google Scholar
[46] V. V., Fock and A. B., Goncharov, “The Quantum Dilogarithm and Quantisation of Cluster Varieties,” Inventiones Math. 175 (2009) 223–286, arXiv:math.QA/0702397.Google Scholar
[47] M., Kontsevich and Y., Soibelman, “Stability Structures, Motivic Donaldson-Thomas Invariants and Cluster Transformations,” arXiv:0811.2435 [math.AG].
[48] D., Gaiotto, G. W., Moore, and A., Neitzke, “Wall-Crossing in Coupled 2d-4d Systems,” arXiv:1103.2598 [hep-th].
[49] D., Xie, “Network, Cluster Coordinates and N = 2 Theory I,” arXiv:1203.4573 [hep-th].
[50] S., Franco, “Bipartite Field Theories: from D-Brane Probes to Scattering Amplitudes,” JHEP 1211 (2012) 141, arXiv:1207.0807 [hep-th].Google Scholar
[51] D., Xie and M., Yamazaki, “Network and Seiberg Duality,” JHEP 1209 (2012) 036, arXiv:1207.0811 [hep-th].Google Scholar
[52] D., Xie, “Network, Cluster Coordinates and N =2 Theory II: Irregular Singularity,” arXiv:1207.6112 [hep-th].
[53] J. J., Heckman, C., Vafa, D., Xie, and M., Yamazaki, “String Theory Origin of Bipartite SCFTs,” JHEP 1305 (2013) 148, arXiv:1211.4587 [hep-th].Google Scholar
[54] S., Franco, D., Galloni, and R.-K., Seong, “New Directions in Bipartite Field Theories,” JHEP 1306 (2013) 032, arXiv:1211.5139 [hep-th].Google Scholar
[55] Y., Kodama and L., Williams, “KP Solitons, Total Positivity, and Cluster Algebras,” Proc. Natl. Acad. Sci. USA 108 (2011) no. 22, 8984–8989, arXiv:1105.4170 [math.CO].Google Scholar
[56] Y., Kodama and L., Williams, “KP Solitons and Total Positivity for the Grassmannian,” Inventiones Mathematicae (2014) 1–63, arXiv:1106.0023 [math.CO].Google Scholar
[57] Y., Kodama and L., Williams, “A Deodhar Decomposition of the Grassmannian and the Regularity of KP solitons,” arXiv:1204.6446 [math.CO].
[58] V., Pestun, “Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops,” Commun. Math. Phys. 313 (2012) 71–129, arXiv:0712.2824 [hep-th].Google Scholar
[59] D., Gaiotto and E., Witten, “S-Duality of Boundary Conditions in N = 4 Super Yang–Mills Theory,” Adv. Theor. Math. Phys. 13 (2009), arXiv:0807.3720 [hep-th].Google Scholar
[60] B. L. van der, Waerden, “Spinoranalyse,” Nach. Ges. Wiss. Göttingen Math.-Phys. 1 (1929) 100–109.Google Scholar
[61] F. A., Berends, R., Kleiss, P. De, Causmaecker, R., Gastmans, and T. T., Wu, “Single Bremsstrahlung Processes in Gauge Theories,” Phys. Lett. B103 (1981) 124.Google Scholar
[62] P. De, Causmaecker, R., Gastmans, W., Troost, and T. T., Wu, “Multiple Bremsstrahlung in Gauge Theories at High Energies. 1. General Formalism for Quantum Electrodynamics,” Nucl. Phys. B206 (1982) 53.Google Scholar
[63] J. F., Gunion and Z., Kunszt, “Improved Analytic Techniques for Tree Graph Calculations and the Ggqq Lepton Anti-Lepton Subprocess,” Phys. Lett. B161 (1985) 333.Google Scholar
[64] R., Kleiss and W. J., Stirling, “Spinor Techniques for Calculating pp?W±Z0 +Jets,” Nucl. Phys. B262 (1985) 235–262.Google Scholar
[65] N., Arkani-Hamed, F., Cachazo, and J., Kaplan, “What is the Simplest Quantum Field Theory?,” JHEP 1009 (2010) 016, arXiv:0808.1446 [hep-th].Google Scholar
[66] P., Griffiths and J., Harris, Principles of Algebraic Geometry. Wiley Classics Library. New York, John Wiley & Sons Inc., 1978.
[67] R. J., Eden, P. V., Landshoff, D. I., Olive, and J. C., Polkinghorne, The Analytic S-Matrix. Cambridge University Press, 1966.
[68] P., Benincasa and F., Cachazo, “Consistency Conditions on the S-Matrix of Massless Particles,” arXiv:0705.4305 [hep-th].
[69] G. 't, Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B72 (1974) 461.Google Scholar
[70] V. P., Nair, “A Current Algebra for Some Gauge Theory Amplitudes,” Phys. Lett. B214 (1988) 215.Google Scholar
[71] E., Witten, “Perturbative Gauge Theory as a String Theory in Twistor Space,” Commun. Math. Phys. 252 (2004) 189–258, arXiv:hep-th/0312171.Google Scholar
[72] M., Bianchi, H., Elvang, and D. Z., Freedman, “Generating Tree Amplitudes in N =4 SYM and N =8 SG,” JHEP 0809 (2008) 063, arXiv:0805.0757 [hep-th].Google Scholar
[73] J., Drummond, J., Henn, G., Korchemsky, and E., Sokatchev, “Generalized Unitarity for N =4 Super-Amplitudes,” Nucl. Phys. B869 (2013) 452–492, arXiv:0808.0491 [hep-th].Google Scholar
[74] R., Britto, F., Cachazo, and B., Feng, “New Recursion Relations for Tree Amplitudes of Gluons,” Nucl. Phys. B715 (2005) 499–522, arXiv:hep-th/0412308.Google Scholar
[75] R., Britto, F., Cachazo, B., Feng, and E., Witten, “Direct Proof of Tree-Level Recursion Relation in Yang–Mills Theory,” Phys. Rev. Lett. 94 (2005) 181602, arXiv:hep-th/0501052.Google Scholar
[76] Z., Bern, L. J., Dixon, and D. A., Kosower, “On-Shell Recurrence Relations for One-Loop QCD Amplitudes,” Phys. Rev. D71 (2005) 105013, arXiv:hep-th/0501240.Google Scholar
[77] D. C., Dunbar, J. H., Ettle, and W. B., Perkins, “Augmented Recursion For One-loop Amplitudes,” Nucl. Phys. Proc. Suppl. 205-206 (2010) 74–79, arXiv:1011.0559 [hep-th].Google Scholar
[78] R. H., Boels, “On BCFW Shifts of Integrands and Integrals,” JHEP 1011 (2010) 113, arXiv:1008.3101 [hep-th].Google Scholar
[79] S. D., Alston, D. C., Dunbar, and W. B., Perkins, “Complex Factorisation and Recursion for One-Loop Amplitudes,” Phys. Rev. D86 (2012) 085022, arXiv:1208.0190 [hep-th].Google Scholar
[80] R., Britto, F., Cachazo, and B., Feng, “Computing One-Loop Amplitudes from the Holomorphic Anomaly of Unitarity Cuts,” Phys. Rev. D71 (2005) 025012, arXiv:hep-th/0410179.Google Scholar
[81] S., Caron-Huot, “Loops and Trees,” JHEP 1105 (2011) 080, arXiv:1007.3224 [hep-ph].Google Scholar
[82] A. P., Hodges, “Twistor Diagrams for All Tree Amplitudes in Gauge Theory: A Helicity-Independent Formalism,” arXiv:hep-th/0512336.
[83] M. B., Green, J. H., Schwarz, and L., Brink, “N=4 Yang–Mills andN=8 Supergravity as Limits of String Theories,” Nucl. Phys. B198 (1982) 474–492.Google Scholar
[84] C.-N., Yang, “Some Exact Results for the Many Body Problems in One Dimension with Repulsive Delta Function Interaction,” Phys. Rev. Lett. 19 (1967) 1312–1314.Google Scholar
[85] R. J., Baxter, “Partition Function of the Eight Vertex Lattice Model,” Annals Phys. 70 (1972) 193–228.Google Scholar
[86] J., Kaplan, “Unraveling Ln,k: Grassmannian Kinematics,” JHEP 1003 (2010) 025, arXiv:0912.0957 [hep-th].Google Scholar
[87] E. I., Buchbinder and F., Cachazo, “Two-Loop Amplitudes of Gluons and Octa-Cuts in N =4 Super Yang–Mills,” JHEP 0511 (2005) 036, arXiv:hep-th/0506126.Google Scholar
[88] F., Cachazo and D., Skinner, “On the Structure of Scattering Amplitudes in N =4 Super Yang–Mills and N =8 Supergravity,” arXiv:0801.4574 [hep-th].
[89] F., Cachazo, “Sharpening The Leading Singularity,” arXiv:0803.1988 [hep-th].
[90] F., Cachazo, M., Spradlin, and A., Volovich, “Leading Singularities of the Two-Loop Six-Particle MHV Amplitude,” Phys. Rev. D78 (2008) 105022, arXiv:0805.4832 [hep-th].Google Scholar
[91] D. A., Kosower and K. J., Larsen, “Maximal Unitarity at Two Loops,” Phys. Rev. D85 (2012) 045017, arXiv:1108.1180 [hep-th].Google Scholar
[92] S., Caron-Huot and K. J., Larsen, “Uniqueness of Two-Loop Master Contours,” JHEP 1210 (2012) 026, arXiv:1205.0801 [hep-ph].Google Scholar
[93] P., Mastrolia, E., Mirabella, and T., Peraro, “Integrand Reduction of One-Loop Scattering Amplitudes Through Laurent Series Expansion,” JHEP 1206 (2012) 095, arXiv:1203.0291 [hep-ph].Google Scholar
[94] R., Britto, F., Cachazo, and B., Feng, “Generalized Unitarity and One-Loop Amplitudes in N=4 Super-Yang–Mills,” Nucl. Phys. B725 (2005) 275–305, arXiv:hep-th/0412103.Google Scholar
[95] W. L. van, Neerven and J. A. M., Vermaseren, “Large Loop Integrals,” Phys. Lett. B137 (1984) 241.Google Scholar
[96] Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits,” Nucl. Phys. B425 (1994) 217–260, arXiv:hep-ph/9403226.Google Scholar
[97] Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “Fusing Gauge Theory Tree Amplitudes into Loop Amplitudes,” Nucl. Phys. B435 (1995) 59–101, arXiv:hep-ph/9409265.
[98] Z., Bern, J., Rozowsky, and B., Yan, “Two-Loop Four-Gluon Amplitudes in N =4 Super Yang–Mills,” Phys. Lett. B401 (1997) 273–282, arXiv:hep-ph/9702424.Google Scholar
[99] Z., Bern, L. J., Dixon, and V. A., Smirnov, “Iteration of Planar Amplitudes in Maximally Supersymmetric Yang–Mills Theory at Three Loops and Beyond,” Phys. Rev. D72 (2005) 085001, arXiv:hep-th/0505205.Google Scholar
[100] Z., Bern, J., Carrasco, H., Johansson, and D., Kosower, “Maximally Supersymmetric Planar Yang–Mills Amplitudes at Five Loops,” Phys. Rev. D76 (2007) 125020, arXiv:0705.1864 [hep-th].Google Scholar
[101] G., Ossola, C. G., Papadopoulos, and R., Pittau, “CutTools: A Program Implementing the OPP Reduction Method to Compute One-Loop Amplitudes,” JHEP 0803 (2008) 042, arXiv:0711.3596 [hep-ph].Google Scholar
[102] I. M., Gelfand, R. M., Goresky, R. D., MacPherson, and V. V., Serganova, “Combinatorial Geometries, Convex Polyhedra, and Schubert Cells,” Adv. in Math. 63 (1987) no. 3, 301–316.Google Scholar
[103] N. E., Mnëv, “The Universality Theorems on the Classification Problem of Configuration Varieties and Convex Polytope Varieties,” in Topology and Geometry—Rohlin Seminar, vol. 1346 of Lecture Notes in Math., pp. 527–543. Springer, Berlin, 1988.
[104] K., Rietsch, “An Algebraic Cell Decomposition of the Nonnegative Part of a Flag Variety,” J. Algebra 213 (1999) no. 1, 144–154, arXiv:alg-geom/9709035.Google Scholar
[105] L. K., Williams, “Shelling Totally Nonnegative Flag Varieties,” J. Reine Angew. Math. 609 (2007) 1–21, arXiv:math/0509129 [math.CO].Google Scholar
[106] L. K., Williams, “Enumeration of Totally Positive Grassmann Cells,” Adv. Math. 190 (2005) no. 2, 319–342, arXiv:math/0307271 [math.CO].Google Scholar
[107] S. J., Parke and T. R., Taylor, “An Amplitude for n-Gluon Scattering,” Phys. Rev. Lett. 56 (1986) 2459.Google Scholar
[108] R., Penrose, “Twistor Algebra,” J. Math. Phys. 8 (1967) 345.Google Scholar
[109] R., Penrose and M. A. H., MacCallum, “Twistor Theory: An Approach to the Quantization of Fields and Space-Time,” Phys. Rept. 6 (1972) 241–316.Google Scholar
[110] R., Penrose, “Twistor Quantization and Curved Space-Time,” Int. J. Theor. Phys. 1 (1968) 61–99.Google Scholar
[111] E. H., Kronheimer and R., Penrose, “On the Structure of Causal Spaces,” Proc. Cambridge Phil. Soc. 63 (1967) 481–501.Google Scholar
[112] R., Penrose, “The Central Programme of Twistor Theory,” Chaos Solitons Fractals 10 (1999) 581–611.Google Scholar
[113] A., Ferber, “Supertwistors and Conformal Supersymmetry,” Nucl. Phys. B132 (1978) 55.Google Scholar
[114] J. M., Drummond, J. M., Henn, and J., Plefka, “Yangian Symmetry of Scattering Amplitudes in N = 4 Super Yang–Mills Theory,” JHEP 05 (2009) 046, arXiv:0902.2987 [hep-th].Google Scholar
[115] J., Drummond and L., Ferro, “The Yangian Origin of the Grassmannian Integral,” JHEP 1012 (2010) 010, arXiv:1002.4622 [hep-th].Google Scholar
[116] J., Drummond and L., Ferro, “Yangians, Grassmannians and T-duality,” JHEP 1007 (2010) 027, arXiv:1001.3348 [hep-th].Google Scholar
[117] N., Beisert, J., Henn, T., McLoughlin, and J., Plefka, “One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in N =4 Super Yang–Mills,” JHEP 04 (2010) 085, arXiv:1002.1733 [hep-th].Google Scholar
[118] J., Drummond, J., Henn, V., Smirnov, and E., Sokatchev, “Magic Identities for Conformal Four-Point Integrals,” JHEP 0701 (2007) 064, arXiv:hep-th/0607160.Google Scholar
[119] L. F., Alday and J. M., Maldacena, “Gluon Scattering Amplitudes at Strong Coupling,” JHEP 06 (2007) 064, arXiv:0705.0303 [hep-th].Google Scholar
[120] L. F., Alday and J., Maldacena, “Comments on Gluon Scattering Amplitudes via AdS/CFT,” JHEP 11 (2007) 068, arXiv:0710.1060 [hep-th].Google Scholar
[121] A., Brandhuber, P., Heslop, and G., Travaglini, “MHV Amplitudes in N =4 Super Yang–Mills andWilson Loops,” Nucl. Phys. B794 (2008) 231–243, arXiv:0707.1153 [hep-th].Google Scholar
[122] J. M., Drummond, G. P., Korchemsky, and E., Sokatchev, “Conformal Properties of Four-Gluon Planar Amplitudes and Wilson loops,” Nucl. Phys. B795 (2008) 385–408, arXiv:0707.0243 [hep-th].Google Scholar
[123] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “On Planar Gluon Amplitudes/Wilson Loops Duality,” Nucl. Phys. B795 (2008) 52–68, arXiv:0709.2368 [hep-th].Google Scholar
[124] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “The Hexagon Wilson Loop and the BDS Ansatz for the Six-Gluon Amplitude,” Phys. Lett. B662 (2008) 456–460, arXiv:0712.4138 [hep-th].Google Scholar
[125] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “Hexagon Wilson Loop = Six-Gluon MHV Amplitude,” Nucl. Phys. B815 (2009) 142–173, arXiv:0803.1466 [hep-th].Google Scholar
[126] Z., Bern et al., “The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang–Mills Theory,” Phys. Rev. D78 (2008) 045007, arXiv:0803.1465 [hep-th].Google Scholar
[127] L. F., Alday and J., Maldacena, “Null Polygonal Wilson Loops and Minimal Surfaces in Anti-de-Sitter Space,” JHEP 11 (2009) 082, arXiv:0904.0663 [hep-th].Google Scholar
[128] A., Hodges, “Eliminating Spurious Poles from Gauge-Theoretic Amplitudes,” JHEP 1305 (2013) 135, arXiv:0905.1473 [hep-th].Google Scholar
[129] G., Korchemsky and E., Sokatchev, “Superconformal Invariants for Scattering Amplitudes in N =4 SYM Theory,” Nucl. Phys. B839 (2010) 377–419, arXiv:1002.4625 [hep-th].Google Scholar
[130] J., Drummond, J., Henn, G., Korchemsky, and E., Sokatchev, “Dual Superconformal Symmetry of Scattering Amplitudes in N=4 Super Yang–Mills Theory,” Nucl. Phys.B828 (2010) 317–374, arXiv:0807.1095 [hep-th].Google Scholar
[131] N., Arkani-Hamed, J., Bourjaily, F., Cachazo, and J., Trnka, “Unification of Residues and Grassmannian Dualities,” JHEP 1101 (2011) 049, arXiv:0912.4912 [hep-th].Google Scholar
[132] N., Arkani-Hamed, J., Bourjaily, F., Cachazo, and J., Trnka, “Local Spacetime Physics from the Grassmannian,” JHEP 1101 (2011) 108, arXiv:0912.3249 [hep-th].Google Scholar
[133] M., Bullimore, L., Mason, and D., Skinner, “Twistor-Strings, Grassmannians and Leading Singularities,” JHEP 1003 (2010) 070, arXiv:0912.0539 [hep-th].Google Scholar
[134] S. K., Ashok and E. Dell, Aquila, “On the Classification of Residues of the Grassmannian,” JHEP 1110 (2011) 097, arXiv:1012.5094 [hep-th].Google Scholar
[135] M., Staudacher, “Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the R-Matrix Formalism,” Lett. Math. Phys. 99 (2012) 191–208, arXiv:1012.3990 [hep-th].Google Scholar
[136] M. S., Bianchi, M., Leoni, and S., Penati, “An All Order Identity between ABJM and N =4 SYM Four-Point Amplitudes,” JHEP 1204 (2012) 045, arXiv:1112.3649 [hep-th].Google Scholar
[137] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “Scattering Amplitudes/Wilson Loop Duality In ABJM Theory,” JHEP 1201 (2012) 056, arXiv:1107.3139 [hep-th].Google Scholar
[138] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “Scattering in ABJ theories,” JHEP 1112 (2011) 073, arXiv:1110.0738 [hep-th].Google Scholar
[139] M. S.|Bianchi, M.|Leoni, A.|Mauri, S.|Penati, and A.|Santambrogio, “One Loop Amplitudes In ABJM,” JHEP 1207 (2012) 029, arXiv:1204.4407 [hep-th].
[140] T., Bargheer, F., Loebbert, and C., Meneghelli, “Symmetries of Tree-Level Scattering Amplitudes in N=6 Superconformal Chern–Simons Theory,” Phys. Rev. D82 (2010) 045016, arXiv:1003.6120 [hep-th].Google Scholar
[141] S., Lee, “Yangian Invariant Scattering Amplitudes in Supersymmetric Chern–Simons Theory,” Phys. Rev. Lett. 105 (2010) 151603, arXiv:1007.4772 [hep-th].Google Scholar
[142] Y.-t., Huang and A. E., Lipstein, “Dual Superconformal Symmetry of N = 6 Chern–Simons Theory,” JHEP 1011 (2010) 076, arXiv:1008.0041 [hep-th].Google Scholar
[143] D., Gang, Y.-t., Huang, E., Koh, S., Lee, and A. E., Lipstein, “Tree-level Recursion Relation and Dual Superconformal Symmetry of the ABJM Theory,” JHEP 1103 (2011) 116, arXiv:1012.5032 [hep-th].Google Scholar
[144] A., Agarwal, N., Beisert, and T., McLoughlin, “Scattering in Mass-Deformed N =4 Chern–Simons Models,” JHEP 0906 (2009) 045, arXiv:0812.3367 [hep-th].Google Scholar
[145] T., Bargheer, N., Beisert, F., Loebbert, T., McLoughlin, N., Beisert, et al., “Conformal Anomaly for Amplitudes in N =6 Superconformal Chern–Simons Theory,” J. Phys. A45 (2012) 475402, arXiv:1204.4406 [hep-th].Google Scholar
[146] A., Brandhuber, G., Travaglini, and C., Wen, “A Note on Amplitudes in N = 6 Superconformal Chern–Simons Theory,” JHEP 1207 (2012) 160, arXiv:1205.6705 [hep-th].Google Scholar
[147] A., Brandhuber, G., Travaglini, and C., Wen, “All One-Loop Amplitudes in N =6 Superconformal Chern–Simons Theory,” JHEP 1210 (2012) 145, arXiv:1207.6908 [hep-th].Google Scholar
[148] M., Kontsevich, “Deformation Quantization of Poisson Manifolds,” Lett. Math. Phys. 66 (2003) no. 3, 157–216, arXiv:q-alg/9709040.Google Scholar
[149] S., Caron-Huot, “Notes on the Scattering Amplitude / Wilson Loop Duality,” JHEP 1107 (2011) 058, arXiv:1010.1167 [hep-th].Google Scholar
[150] L., Mason and D., Skinner, “The Complete Planar S-Matrix of N=4 SYM as aWilson Loop in Twistor Space,” JHEP 12 (2010) 018, arXiv:1009.2225 [hep-th].Google Scholar
[151] M., Bullimore and D., Skinner, “Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space,” arXiv:1101.1329 [hep-th].
[152] L. F., Alday, B., Eden, G. P., Korchemsky, J., Maldacena, and E., Sokatchev, “From Correlation Functions to Wilson Loops,” JHEP 1109 (2011) 123, arXiv:1007.3243 [hep-th].Google Scholar
[153] B., Eden, G. P., Korchemsky, and E., Sokatchev, “From Correlation Functions to Scattering Amplitudes,” JHEP 1112 (2011) 002, arXiv:1007.3246 [hep-th].Google Scholar
[154] B., Eden, G. P., Korchemsky, and E., Sokatchev, “More on the Duality Correlators/ Amplitudes,” Phys. Lett. B709 (2012) 247–253, arXiv:1009.2488 [hep-th].Google Scholar
[155] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “The Super-Correlator/ Super-Amplitude Duality: Part I,” Nucl. Phys. B869 (2013) 329–377, arXiv:1103.3714 [hep-th].Google Scholar
[156] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “The Super-Correlator/ Super-Amplitude Duality: Part II,” Nucl. Phys. B869 (2013) 378–416, arXiv:1103.4353 [hep-th].Google Scholar
[157] P. C., Schuster and N., Toro, “Constructing the Tree-Level Yang–Mills S-Matrix Using Complex Factorization,” JHEP0906 (2009) 079, arXiv:0811.3207 [hep-th].Google Scholar
[158] S., He and H.-b., Zhang, “Consistency Conditions on S-Matrix of Spin 1 Massless Particles,” JHEP 1007 (2010) 015, arXiv:0811.3210 [hep-th].Google Scholar
[159] J. M., Drummond and J. M., Henn, “All Tree-Level Amplitudes in N=4 SYM,” JHEP04 (2009) 018, arXiv:0808.2475 [hep-th].Google Scholar
[160] J. L., Bourjaily, “Efficient Tree-Amplitudes in N =4: Automatic BCFW Recursion in MATHEMATICA,” arXiv:1011.2447 [hep-ph].
[161] N., Arkani-Hamed, F., Cachazo, C., Cheung, and J., Kaplan, “The S-Matrix in Twistor Space,” JHEP 1003 (2010) 110, arXiv:0903.2110 [hep-th].Google Scholar
[162] Z., Bern, “String Based Perturbative Methods for Gauge Theories,” arXiv:hep-ph/9304249.
[163] Z., Bern and A., Morgan, “Supersymmetry Relations Between Contributions to One-Loop Gauge Boson Amplitudes,” Phys. Rev. D49 (1994) 6155–6163, arXiv:hepph/ 9312218.Google Scholar
[164] A., Kotikov and L., Lipatov, “DGLAP and BFKL Equations in the N =4 Supersymmetric Gauge Theory,” Nucl. Phys. B661 (2003) 19–61, arXiv:hep-ph/0208220.Google Scholar
[165] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, and J., Trnka, “Local Integrals for Planar Scattering Amplitudes,” JHEP 1206 (2012) 125, arXiv:1012.6032 [hep-th].Google Scholar
[166] A., Brandhuber, O., Gurdogan, R.|Mooney, G., Travaglini, and G., Yang, “Harmony of Super Form Factors,” JHEP 1110 (2011) 046, arXiv:1107.5067 [hep-th].Google Scholar
[167] L. F., Alday, D., Gaiotto, and Y., Tachikawa, “Liouville Correlation Functions from Four-Dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197, arXiv:0906.3219 [hep-th].Google Scholar
[168] L. F., Alday, “Review of AdS/CFT Integrability, Chapter V.3: Scattering Amplitudes at Strong Coupling,” Lett. Math. Phys. 99 (2012) 507–528, arXiv:1012.4003 [hep-th].Google Scholar
[169] N., Arkani-Hamed, A. G., Cohen, D. B., Kaplan, A., Karch, and L., Motl, “Deconstructing (2,0) and Little String Theories,” JHEP 0301 (2003) 083, arXiv:hep-th/0110146.Google Scholar
[170] C., Cheung and D., O'Connell, “Amplitudes and Spinor-Helicity in Six Dimensions,” JHEP 0907 (2009) 075, arXiv:0902.0981 [hep-th].Google Scholar
[171] We thank Yu-tin Huang for discussions on this point.
[172] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, A., Hodges, and J., Trnka, “A Note on Polytopes for Scattering Amplitudes,” JHEP 1204 (2012) 081, arXiv:1012.6030 [hep-th].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×