Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T01:12:45.255Z Has data issue: false hasContentIssue false

Part IV - Glacially Triggered Faulting at the Edge and in the Periphery of the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

Geological investigations in the last decade increased the number of locations with evidence or indications for glacially triggered faulting in northern central and northeastern Europe, i.e. in the countries of Denmark, Germany, Poland, Belarus, Lithuania, Latvia, Estonia and parts of western Russia. These locations are at the periphery, the edge or even outside of the former ice margin. They are summarized in the following sections.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Al Hseinat, M., Hübscher, C., Lang, J. et al. (2016). Triassic to recent tectonic evolution of a crestal collapse graben above a salt-cored anticline in the Glückstadt Graben/North German Basin. Tectonophysics, 680, 5066, doi.org/10.1016/j.tecto.2016.05.008.Google Scholar
Al Hseinat, M. and Hübscher, C. (2017). Late Cretaceous to recent tectonic evolution of the north German Basin and the transition zone to the Baltic shield/southwest Baltic Sea. Tectonophysics, 708, 2855, doi.org/10.1016/j.tecto.2017.04.021.CrossRefGoogle Scholar
Andersen, T. R., Westergaard, J. H. and Pytlich, A. (2016). Delineation of fault systems on Langeland, Denmark, based on AEM data and boreholes. ASEG-PESA-AIG 2016, August 21–24, 2016, Adelaide, Australia. Extended abstract, 6 pp.CrossRefGoogle Scholar
Arvidsson, R., Gregersen, S., Kulhanek, O. and Wahlström, R. (1991). Recent Kattegat earthquakes – evidence of active intraplate tectonics in southern Scandinavia. Physics of the Earth and Planetary Interiors, 67, 275287, doi.org/10.1016/0031-9201(91)90024-C.Google Scholar
Bendixen, C., Jensen, J. B., Bennike, O. and Boldreel, L. O. (2013). Late glacial to early Holocene development of southern Kattegat. Geological Survey of Denmark and Greenland Bulletin, 28, 2124, doi.org/10.34194/geusb.v28.4712.Google Scholar
Blem, H. (2002). The Carlsberg Fault – history, location and importance. Danish Geotechnical Society Bulletin, 19, 6182 (in Danish).Google Scholar
Brandes, C., Steffen, H., Steffen, R. and Wu, P. (2015). Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43, 611614, doi.org/10.1130/G36710.1.CrossRefGoogle Scholar
Brandes, C., Steffen, H., Sandersen, P. B. E., Wu, P. and Winsemann, J. (2018). Glacially induced faulting along the NW segment of the Sorgenfrei–Tornquist Zone, northern Denmark: implications for neotectonics and Lateglacial fault-bound basin formation. Quaternary Science Reviews, 189, 149168, doi.org/10.1016/j.quascirev.2018.03.036.Google Scholar
Britze, P. and Japsen, P. (1991). Geological map of Denmark 1:400 000: the Danish Basin: «Top Zechstein» and the Triassic (two-way travel time and depth, thickness and interval velocity). Geological Survey of Denmark, Map Series, 31, 14.Google Scholar
Bruun-Petersen, J. (1987). Prækvartæroverfladen i Ribe amt, dens højdeforhold og dannelse samt indflydelse på vandindvindingsmulighederne [The land surface in Ribe county, its height level conditions and formation including influence on water extraction possibilities]. Dansk Geologisk Forening Årsskrift for 1986, Copenhagen, 1 June 1987, pp. 35–40 (in Danish).Google Scholar
FENCAT (2020). Fennoscandian earthquake catalogue for 1375–2014, www.seismo.helsinki.fi/bulletin/list/catalog/FENCAT.html.Google Scholar
Fischer, A., Clemmensen, L. B., Donahue, R. et al. (2013). Late Paleolithic Nørre Lyngby – a northern outpost close to the west coast of Europe. Quartär, 60, 137162, doi.org/10.7485/QU60_07.Google Scholar
Frost, R.T.C. (1977). Tectonic patterns in the Danish Region (as deduced from a comparative analysis of magnetic, landsat, bathymetric and gravity lineaments). Geologie en Mijnbouw, 56, 351362.Google Scholar
Gregersen, S. (1990). Crustal stress in northern Europe. In Freeman, R. and Müller, S., eds., Proceedings of the VI workshop on the European Geotraverse Project. ESF Strasbourg, pp. 357360.Google Scholar
Gregersen, S. (1991). Crustal structure across the Tornquist Zone (southwestern edge of the Baltic Shield): a review of the EUGENO-S geophysical results. Tectonophysics, 189, 165182, doi.org/10.1016/0040-1951(91)90494-D.CrossRefGoogle Scholar
Gregersen, S. (2014). Jordskælvsrisiko i Danmark? – forslag til fremtidens studier [Earthquake risk in Denmark? – Suggestions for future studies]. Kvant, June 2014, Danish Geophysical Society.Google Scholar
Gregersen, S., Leth, J., Lind, G. and Lykke-Andersen, H. (1996). Earthquake activity and its relationship with geologically recent motion in Denmark. Tectonophysics, 257, 265273, doi.org/10.1016/0040-1951(95)00193-X.CrossRefGoogle Scholar
Gregersen, S. and Schmidt, K. (2001). Tektonik i Danmark – Sorgenfrei–Tornquist Zonen [Tectonics in Denmark – The Sorgenfrei–Tornquist Zone]. Geologisk Nyt, February 2001, 16–17.Google Scholar
Gregersen, S., Voss, P., Nielsen, L. V. et al. (2009). Uniqueness of modelling results from teleseismic P-wave tomography in Project Tor. Tectonophysics, 481, 99107, doi.org/10.1016/j.tecto2009.01.020.CrossRefGoogle Scholar
Gregersen, S. and Voss, P. (2009). Stress change over short geological time: the case of Scandinavia over 9000 years since the Ice Age. In Reicherter, K., Michetti, A. M. and Silva Barroso, P. G., eds., Palaeoseismology: Historical and Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment. Geological Society, London, Special Publication, Vol. 316, pp. 173178, doi.org/10.1144/SP316.10.Google Scholar
Gregersen, S. and Voss, P. (2010). Irregularities in Scandinavian postglacial uplift/subsidence in time scales tens, hundreds, thousands of years. Journal of Geodynamics, 50, 2731, doi.org/10.1016/j.jog.2009.11.004.CrossRefGoogle Scholar
Gregersen, S. and Voss, P. H. (2012). Efforts to include geological and geodetic observations in the assessment of earthquake activity in Denmark. Geological Survey of Denmark and Greenland Bulletin, 26, 4144, doi.org/10.34194/geusb.v26.4747.Google Scholar
Gregersen, S. and Voss, P. H. (2014). Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years – earthquakes in Denmark? Solid Earth, 5, 109119, doi.org/10.5194/se-5-109-2014.Google Scholar
Hansen, D. L., Nielsen, S. B. and Lykke-Andersen, H. (2000). The post-Triassic evolution of the Sorgenfrei–Tornquist Zone – results from thermo-mechanical modelling. Tectonophysics, 328, 245267, doi.org/10.1016/S0040-1951(00)00216-X.CrossRefGoogle Scholar
Hansen, J. M. (1980). Læsøs postglaciale udvikling i relation til den Fennoskandiske randzone [Læsø’s postglacial development in relation to the Fennoscandian Border Zone]. Dansk Geologisk Forening Årsskrift for 1979, 23–30.Google Scholar
Hansen, J. M., Aagaard, T., Stockmarr, J. et al. (2016). Continuous record of Holocene sea-level changes and coastal development of the Kattegat island Læsø (4900 years BP to present). Bulletin of the Geological Society of Denmark, 64, 155, doi.org/10.37570/bgsd-2016-64-01.Google Scholar
Heilmann-Clausen, C. (1995). Palæogene aflejringer over danskekalken [Palaeogene deposits above the Danian limestone]. In Nielsen, O. B., ed., Danmarks geologi fra Øvre Kridt til i dag. Århus Geokompendier, 1, 79113, Århus Universitet.Google Scholar
Houmark-Nielsen, M. (1987). Pleistocene stratigraphy and glacial history of the central part of Denmark. Bulletin of the Geological Society of Denmark, 36, 189 pp.Google Scholar
Jakobsen, P. R. and Pedersen, S. A. S. (2009). Fracture valleys in central Jylland – a neotectonic feature. Geological Survey of Denmark and Greenland Bulletin, 17, 3336, doi.org/10.34194/geusb.v17.5008.CrossRefGoogle Scholar
Jakobsen, P. R., Fallesen, J. and Knudsen, C. (2013a). Strukturer i den Københavnske undergrund – folder, forkastninger og sprækker [Structures in Copenhagen’s subsurface – folds, faults and cracks]. Danish Geotechnical Society Bulletin, 19, December 2002, 1929.Google Scholar
Jakobsen, P. R., Wegmuller, U., Capes, R. and Pedersen, S. A. S. (2013b). Terrain subsidence detected by satellite radar scanning of the Copenhagen area, Denmark, and its relation to the tectonic framework. Geological Survey of Denmark and Greenland Bulletin, 28, 2528, doi.org/10.34194/geusb.v28.4713.Google Scholar
Japsen, P. and Langtofte, C. (1991a). Geologisk kort over Danmark. Det danske Bassin. “Basis Kalk” og Kalk Gruppen [Geological map of Denmark. The Danish Basin. “Basis Lime” and the Lime Group]. Danmarks Geologiske Undersøgelse Kortserie, 29.Google Scholar
Japsen, P. and Langtofte, C. (1991b). Geologisk kort over Danmark, 1:400.000. Det danske Bassin. “Top Trias” og Jura-Nedre Kridt [Geological map of Denmark, 1:400,000. The Danish Basin. “Top Triassic” and Jurassic–Lower Cretaceous]. Danmarks Geologiske Undersøgelse Kortserie, 30.Google Scholar
Jensen, J. B., Petersen, K. S., Konradi, P. et al. (2002). Neotectonics, sea-level changes and biological evolution in the Fennoscandian Border Zone of the southern Kattegat Sea. Boreas, 31, 133150, doi.org/10.1111/j.1502-3885.2002.tb01062.x.Google Scholar
Jessen, A. and Nordmann, V. (1915). Ferskvandslagene ved Nr. Lyngby. English summary: the fresh-water deposits at Nørre Lyngby. Geological Survey of Denmark, II Series, 29, 66 pp.Google Scholar
Kammann, J., Hübscher, C., Boldreel, L. O. and Nielsen, L. (2016). High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen – implications for linking Mesozoic and late Pleistocene structures. Tectonophysics, 682, 5664, doi.org/10.1016/j.tecto.2016.05.043.CrossRefGoogle Scholar
Kronborg, C., Bender, H. and Larsen, G. (1978). Tektonik som en mulig medvirkende årsag til daldannelsen i Midtjylland [Tectonics as a possible contributing factor to the valley formation in Mid Jutland]. Danmarks Geologiske Undersøgelser, Årbog 1977, 63–76.Google Scholar
Lang, J., Hampel, A., Brandes, C. and Winsemann, J. (2014). Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes. Quaternary Science Reviews, 101, 217233, doi.org/10.1016/j.quascirev.2014.07.022.Google Scholar
Lykke-Andersen, H. (1979). Nogle undergrundstektoniske elementer i det danske Kvartær [Some subsurficial tectonic elements in the Danish Quaternary]. Dansk Geologisk Forening, Årsskrift for 1978, 1–6 (in Danish).Google Scholar
Lykke-Andersen, H. (1981). Indications of neotectonic features in Denmark. Zeitschrift für Geomorphologie Neue Folge, Suppl.-Bd. 40, 4354.Google Scholar
Lykke-Andersen, H. (1992). Massebevægelser i Vendsyssels og Kattegats kvartære Aflejringer [Mass movements in the Quaternary deposits of Vendsyssel and the Kattegat]. Dansk Geologisk Forening Årsskrift for 1990–91, 93–97 (in Danish).Google Scholar
Lykke-Andersen, H. and Borre, K. (2000). Aktiv tektonik i Danmark – der er liv i Sorgenfrei–Tornquist Zonen [Active tectonics in Denmark – there is life in the Sorgenfrei–Tornquist Zone]. Geologisk Nyt, December 2000, 12–13.Google Scholar
Lykke-Andersen, H., Madirazza, I. and Sandersen, P. B. E. (1996). Tektonik og landskabsdannelse i Midtjylland [Tectonics and landscape formation in Mid-Jutland]. Geologisk Tidsskrift 1996, 3, 132.Google Scholar
Madirazza, I. (1968). An interpretation of the Quaternary morphology in the Paarup Salt Dome area. Meddelande Dansk Geologisk Forening, 18, København.Google Scholar
Madirazza, I. (2002). The influence of tectonics on the land forms in west Jutland, Denmark. Bulletin of the Geological Society of Denmark, 49, 6377.Google Scholar
Madirazza, I. and Jacobsen, B. H. (1998). Nøvling: An unusual salt structure on the southern margin of the Danish Zechstein Basin. Bulletin of the Geological Society of Denmark, 44, 139149.Google Scholar
Markussen, L. M. (2002). Grundvandsforhold i København [Groundwater conditions in Copenhagen]. DGF-Bulletin, 19, 165182.Google Scholar
Milthers, V. (1916). Spaltedale i Jylland [Spaltedale in Jutland]. Danmarks Geologiske Undersøgelse IV, 16 pp.Google Scholar
Mörner, N.-A. (2005). An investigation and catalogue of paleoseismology in Sweden. Tectonophysics, 408, 265307, doi.org/10.1016/j.tecto.2005.05.039.Google Scholar
Nielsen, L. and Thybo, H. (2004). Location of the Carlsberg Fault zone from seismic controlled-source fan recordings. Geophysical Research Letters, 31, doi.org/10.1029/2004GL019603.Google Scholar
Nordmann, V. (1958). Kortbladet Fredericia. A: Kvartære aflejringer [Map sheet of Fredericia. A: Quaternary deposits]. Danmarks Geologiske Undersøgelse, 1, No. 22. English summary, 125 pp.Google Scholar
Ovesen, N. K., Blem, H., Gregersen, S., Møller, H. M. F. and Frederiksen, J. K. (2002). Recent terrain-movements in Copenhagen. Bulletin Geotechnical Society, 19, 183192 (in Danish).Google Scholar
Pedersen, S. A. S. and Gravesen, P. (2016). Tectonic control on the formation of Roskilde Fjord, central Sjælland, Denmark. Geological Survey of Denmark and Greenland Bulletin, 35, 3538, doi.org/10.34194/geusb.v35.4904.Google Scholar
Pedersen, S. A. S., Rasmussen, L. Aa. and Fredericia, J. (2015). Kortbladsbeskrivelse til Geologisk kort over Danmark, 1:50 000, Sakskøbing 1411 I og 1412 II Syd [Map sheet description for the Geological Map of Denmark, 1:50,000, Sakskøbing 1411 I and 1412 II South] (with a summary in English). Geological Survey Denmark and Greenland Map Series, 6, 42 pp., doi.org/10.34194/geusb.v6.4564.Google Scholar
Pedersen, T., Gregersen, S. and TOR working group (1999). Project Tor: deep lithospheric variation across the Sorgenfrei–Tornquist Zone, Southern Scandinavia. Bulletin of the Geological Society Denmark, 46, 1324.Google Scholar
Rasmussen, E. S., Dybkjær, K. and Piasecki, S. (2010). Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark. Geological Survey of Denmark Greenland Bulletin, 22, 92 pp, doi.org/10.34194/geusb.v22.4733.Google Scholar
Rosenkrantz, A. (1937). Bemærkninger om det østsjællandske Daniens stratigrafi og tektonik [Remarks on East Zealand’s Danian stratigraphy and tectonics]. Meddr dansk geologisk Forening, 9, 199212.Google Scholar
Sandersen, P. and Jørgensen, F. (2002). Kortlægning af begravede dale i Jylland og på Fyn Opdatering 2001–2002 [Mapping of Buried Valleys in Jutland and Funen. Update 2001–2002]. De jysk-fynske amters grundvandssamarbejde, Vejle Amt, WaterTech a/s, 189 pp. (in Danish).Google Scholar
Sandersen, P. B. E. and Jørgensen, F. (2015). Neotectonic deformation of a Late Weichselian outwash plain by deglaciation-induced fault reactivation of a deep-seated graben structure. Boreas, 44(2), 413431, doi.org/10.1111/bor.12103.Google Scholar
Sandersen, P. B. E. and Jørgensen, F. (2016). Kortlægning af begravede dale i Danmark. Opdatering 2015 [Mapping of Buried Valleys in Denmark. Update 2015]. GEUS Special Publication, December 2016, Vols. 1 & 2 (in Danish).Google Scholar
Sirocko, F., Reicherter, K., Lehne, R. W. et al. (2008). Glaciation, salt and the present landscape. In Littke, R. et al., eds., Dynamics of Complex Intracontinental Basins: The Central European Basin System. Springer Verlag, Heidelberg, pp. 234245.Google Scholar
Stewart, I. S., Sauber, J. and Rose, J. (2000). Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19, 13671389, doi.org/10.1016/S0277-3791(00)00094-9.CrossRefGoogle Scholar
Stockmarr, J. (1978). Den prækvartære overflade ved Juelsminde, Danmark [The Pre-Quaternary surface at Juelsminde, Denmark]. DGU Årbog 1976, 49–52.Google Scholar
Ter-Borch, N. (1991). Geological map of Denmark, 1:500.000. Structural map of the top chalk group. Geological Survey of Denmark Map Series, 7, 4 pp. Copenhagen.Google Scholar
Ussing, N. V. (1903). Om Jyllands Hedesletter og Teorierne for Deres Dannelse [About Jutland’s Hedesletter and the theories of their formation]. Oversigt over det KGL. danske Videnskabernes Selskabs Forhandlinger, 1903, 2.Google Scholar
Vejbæk, O. V. and Britze, P. (1994). Geological map of Denmark, 1:750.000. Top Pre-Zechstein (two-way travel time and depth). Geological Survey of Denmark Map Series, 45, 8 pp. Copenhagen.Google Scholar
Zoback, M. L., Zoback, M. D., Adams, J. et al. (1989). Global patterns of tectonic stress. Nature, 341, 291298, doi.org/10.1038/341291a0.CrossRefGoogle Scholar

References

Al Hseinat, M. and Hübscher, C. (2014). Ice-load induced tectonics controlled tunnel valley evolution – instances from the southwestern Baltic Sea. Quaternary Science Reviews, 97, 121135, doi.org/10.1016/j.quascirev.2014.05.011.Google Scholar
Al Hseinat, M., Hübscher, C., Lang, J. et al. (2016). Triassic to recent tectonic evolution of a crestal collapse graben above a salt-cored anticline in the Glückstadt Graben/North German Basin. Tectonophysics, 680, 5066, doi.org/10.1016/j.tecto.2016.05.008.Google Scholar
Al Hseinat, M. and Hübscher, C. (2017). Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophysics, 708, 2855, doi.org/10.1016/j.tecto.2017.04.021.CrossRefGoogle Scholar
Betz, D., Führer, F., Greiner, G. and Plein, E. (1987). Evolution of the Lower Saxony Basin. Tectonophysics, 137, 127170, doi.org/10.1016/0040-1951(87)90319-2.Google Scholar
BGR (2019). Der Geodatendienst GERSEIS innerhalb der interaktiven Kartenanwendung Geoviewer der BGR [The geodata service GERSEIS within the interactive map application Geoviewer of the BGR]. biturl.top/eYFnYn.Google Scholar
Böse, M., Lüthgens, C., Lee, J. R. and Rose, J. (2012). Quaternary glaciations of northern Europe. Quaternary Science Reviews, 44, 125, doi.org/10.1016/j.quascirev.2012.04.017.Google Scholar
Brandes, C., Polom, U. and Winsemann, J. (2011). Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Research, 23, 5364, doi.org/10.1111/j.1365-2117.2010.00468.x.Google Scholar
Brandes, C. and Tanner, D. C. (2012). Three-dimensional geometry and fabric of shear deformation-bands in unconsolidated Pleistocene sediments. Tectonophysics, 518, 8492, doi.org/10.1016/j.tecto.2011.11.012.Google Scholar
Brandes, C., Winsemann, J., Roskosch, J. et al.(2012). Activity along the Osning Thrust in Central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quaternary Science Reviews, 38, 4962, doi.org/10.1016/j.quascirev.2012.01.021.Google Scholar
Brandes, C. and Winsemann, J. (2013). Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. International Journal of Earth Sciences, 102, 22552274, doi.org/10.1007/s00531-013-0914-4.Google Scholar
Brandes, C., Steffen, H., Steffen, R. and Wu, P. (2015). Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43, 611614, doi.org/10.1130/G36710.1.Google Scholar
Brandes, C., Igel, J., Loewer, M. et al. (2018). Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: implications for palaeoseismological studies. Sedimentary Geology, 367, 135145, doi.org/10.1016/j.sedgeo.2018.02.005.Google Scholar
Brandes, C., Plenefisch, T., Tanner, D. C., Gestermann, N. and Steffen, H. (2019). Evaluation of deep crustal earthquakes in northern Germany – possible tectonic causes. Terra Nova, 31, 8393, doi.org/10.1111/ter.12372.Google Scholar
Dahm, T., Cesca, S., Hainzl, S., Braun, T. and Krüger, F. (2015). Discrimination between induced, triggered and natural earthquakes close to hydrocarbon reservoirs: a probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. Journal of Geophysical Research, 120, 24912509, doi.org/10.1002/2014JB011778.Google Scholar
Dahm, T., Heimann, S., Funke, S. et al. (2018). Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M≈3 earthquakes in 2015 and 2017. Journal of Seismology, 22, 9851003, doi.org/10.1007/s10950-018-9746-9.Google Scholar
Dahm, T., Krüger, F., Stammler, K. et al. (2007). The 2004 Mw 4.4 Rotenburg, northern Germany, earthquake and its possible relationship with gas recovery. Bulletin of the Seismological Society of America, 97, 691704, doi.org/10.1785/0120050149.Google Scholar
Ehlers, J., Grube, A., Stephan, H. J. and Wansa, S. (2011). Pleistocene glaciations of North Germany-new results. In Ehlers, J., Gibbard, P. L. and Hughes, P. D., eds., Quaternary Glaciations: Extent and Chronology – A Closer Look. Developments in Quaternary Science, 15, pp. 149162, doi.org/10.1016/B978-0-444-53447-7.00013-1.Google Scholar
Eissmann, L. (2002). Quaternary geology of eastern Germany (Saxony, Saxon-Anhalt, South Brandenburg, Thüringia), type area of the Elsterian and Saalian stages in Europe. Quaternary Science Reviews, 21, 12751346, doi.org/10.1016/S0277-3791(01)00075-0.Google Scholar
Franke, W. (2000). The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In Franke, W., Haak, V., Onken, O. and Tanner, D., eds., Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publication, Vol. 179, pp. 35–61, doi.org/10.1144/GSL.SP.2000.179.01.05.Google Scholar
Franke, W., Cocks, L. R. M. and Torsvik, T. H. (2017). The Palaeozoic Variscan oceans revisited. Gondwana Research, 48, 257284, doi.org/10.1016/j.gr.2017.03.005.Google Scholar
Franzke, H. J., Hauschke, N. and Hellmund, M. (2015). Spätpleistozäne bis frühholozäne Tektonik in einem Karsttrichter im Bereich der Störungszone des Harznordrandes nahe Benzingerode (Sachsen-Anhalt) [Late Pleistocene to Early Holocene tectonics in a karst sinkhole in the area of the northern Harz boundary fault zone near Benzingerode (Saxony-Anhalt)]. Hallesches Jahrbuch für Geowissenschaften, 37, 110.Google Scholar
Gangopadhyay, A. and Talwani, P. (2003). Symptomatic features of intraplate earthquakes. Seismological Research Letters, 74, 863883, doi.org/10.1785/gssrl.74.6.863.Google Scholar
Gast, R. and Gundlach, T. (2006). Permian strike slip and extensional tectonics in Lower Saxony, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 4156, doi.org/10.1127/1860-1804/2006/0157-0041.Google Scholar
Grollimund, B. and Zoback, M. D. (2001). Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone? Geology, 29, 175178, doi.org/10.1130/0091-7613(2001)029<0175:DDTISI>2.0.CO;2.Google Scholar
Grube, A. (2019a). Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquakes evidence during the younger Weichselian and Holocene. International Journal of Earth Sciences, 108, 845861, doi.org/10.1007/s00531-019-01681-2.Google Scholar
Grube, A. (2019b). Palaeoseismic structures in Quaternary sediments, related to an assumed fault zone north of the Permian Peissen-Gnutz salt structure (NW Germany) – neotectonic activity and earthquakes from the Saalian to the Holocene. Geomorphology, 328, 1527, doi.org/10.1016/j.geomorph.2018.12.004.Google Scholar
Grünthal, G., Mayer‐Rosa, D. and Lenhardt, W. A. (1998). Abschätzung der Erdbebengefährdung für die D‐A‐CH‐Staaten‐Deutschland, Österreich, Schweiz [Estimation of the earthquake hazard for the D-A-CH-countries – Germany, Austria, Switzerland]. Bautechnik, 75, 753767, doi.org/10.1002/bate.199805380.Google Scholar
Grünthal, G., Stromeyer, D. and Wahlström, R. (2009). Harmonization check of Mw within the central, northern, and northwestern European earthquake catalogue (CENEC). Journal of Seismology, 13, 613632, doi.org/10.1007/s10950-009-9154-2.Google Scholar
Grützner, C., Fischer, P. and Reicherter, K. (2016). Holocene surface ruptures of the Rurrand Fault, Germany-insights from palaeoseismology, remote sensing and shallow geophysics. Geophysical Journal International, 204, 16621677, doi.org/10.1093/gji/ggv558.Google Scholar
Hampel, A., Hetzel, R., Maniatis, G. and Karow, T. (2009). Three‐dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting. Journal of Geophysical Research, 114, B08406, doi.org/10.1029/2008JB006113.Google Scholar
Hardt, J., Lüthgens, C., Hebenstreit, R. and Böse, M. (2016). Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice-marginal position in northeast Germany. Quaternary Science Reviews, 154, 8599, doi.org/10.1016/j.quascirev.2016.10.015.Google Scholar
Hardt, J. and Böse, M. (2018). The timing of the Weichselian Pomeranian ice marginal position south of the Baltic Sea: a critical review of morphological and geochronological results. Quaternary International, 478, 5158, doi.org/10.1016/j.quaint.2016.07.044.CrossRefGoogle Scholar
Heidbach, O., Rajabi, M., Reiter, K. and Ziegler, M. (2016). World Stress Map 2016. GFZ Data Services, doi.org/10.5880/WSM.2016.002.Google Scholar
Hoffmann, G. and Reicherter, K. (2012). Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101, 351363, doi.org/10.1007/s00531-010-0633-z.Google Scholar
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. and Svendsen, J. I. (2016). The last Eurasian ice sheets-a chronological database and time‐slice reconstruction, DATED‐1. Boreas, 45, 145, doi.org/10.1111/bor.12142.Google Scholar
Huster, H., Hübscher, C. and Seidel, E. (2020). Impact of Late Cretaceous to Neogene plate tectonics and Quaternary ice loads on supra-salt deposits at Eastern Glückstadt Graben, North German Basin. International Journal of Earth Sciences, 109, 10291050, doi.org/10.1007/s00531-020-01850-8.Google Scholar
Hübscher, C., Lykke‐Andersen, H., Hansen, M. B. and Reicherter, K. (2004). Investigating the structural evolution of the western Baltic. Eos, Transactions American Geophysical Union, 85, 115115, doi.org/10.1029/2004EO120006.Google Scholar
Kaiser, A., Reicherter, K., Hübscher, C. and Gajewski, D. (2005). Variation of the present-day stress field within the North German Basin – insights from thin shell FE modeling based on residual GPS velocities. Tectonophysics, 397, 5572, doi.org/10.1016/j.tecto.2004.10.009.Google Scholar
Kley, J. and Voigt, T. (2008). Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839842, doi.org/10.1130/G24930A.1.Google Scholar
Knoth, W. (1992). Geologische Übersichtskarte von Sachsen-Anhalt 1:400000 [Geological overview map of Saxony-Anhalt 1:400,000]. Geologisches Landesamt Sachsen-Anhalt, 1st ed., Halle (Saale).Google Scholar
Kossmat, F. (1927). Gliederung des varistischen Gebirgsbaues [Structure of the Variscan mountains]. Abhandlungen des Sächsischen Geologischen Landesamts, 1, 139.Google Scholar
Krawczyk, C. M., McCann, T., Cocks, L. R. M. et al. (2008). Caledonian tectonics. In McCann, T., ed., The Geology of Central Europe. Precambrian and Paleozoic, Vol. 1, Geological Society London, pp. 303381, doi.org/10.1144/CEV1P.7.Google Scholar
Krentz, O., Lapp, M., Seibel, B. and Bahrt, W. (2010). Bruchtektonik [Fracture tectonics]. In Autorenkollektiv, , eds., Die geologische Entwicklung der Lausitz [The Geological Development of the Lausitz]. Vattenfall Europe Mining AG, Cottbus, pp. 137160.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa [English summary: Recent faults in Lapland]. Geologi, 16, 3036 (in Finnish).Google Scholar
Kühner, R. (2009). Neue Ergebnisse zum Nachweis neotektonischer Aktivitäten im Quartär des Tagebaus Welzow-Süd, Südbrandenburg [New results for the detection of neotectonic activities in the Quaternary of the Welzow-Süd opencast mine, southern Brandenburg.]. Brandenburgische Geowissenschaftliche Beiträge, 16, 8793.Google Scholar
Kühner, R. (2010). Quartär [The Quaternary]. In Autorenkollektiv, , eds., Die geologische Entwicklung der Lausitz [The Geological Development of the Lausitz]. Vattenfall Europe Mining AG, Cottbus, pp. 97134.Google Scholar
Lang, J., Hampel, A., Brandes, C. and Winsemann, J. (2014). Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes. Quaternary Science Reviews, 101, 217233, doi.org/10.1016/j.quascirev.2014.07.022.Google Scholar
Lang, J., Lauer, T. and Winsemann, J. (2018). New age constraints for the Saalian glaciation in northern central Europe: implications for the extent of ice sheets and related proglacial lake systems. Quaternary Science Reviews, 180, 240259, doi.org/10.1016/j.quascirev.2017.11.029.Google Scholar
Lauer, T. and Weiss, M. (2018). Timing of the Saalian- and Elsterian glacial cycles and the implications for Middle Pleistocene hominin presence in central Europe. Scientific Reports, 8, 5111, doi.org/10.1038/s41598-018-23541-w.Google Scholar
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P. and Kels, H. (2016). Loess-paleosol sequences at the northern European loess belt in Germany: distribution, geomorphology and stratigraphy. Quaternary Science Reviews, 153, 1130, doi.org/10.1016/j.quascirev.2016.10.008.Google Scholar
Lehné, R. J. and Sirocko, F. (2007). Rezente Bodenbewegungspotenziale in Schleswig-Holstein (Deutschland) – Ursachen und ihr Einfluss auf die Entwicklung der rezenten Topographie [Recent land motion potentials in Schleswig-Holstein (Germany) – causes and their influence on the development of the recent topography]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 158, 329347.Google Scholar
Lehné, R. J. and Sirocko, F. (2010). Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig-Holstein) derived by GIS-based analysis of repeated precise leveling data. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 161, 175188.Google Scholar
Leydecker, G., Steinwachs, M., Seidl, D. et al. (1980). Das Erdbeben vom 2. Juni 1977 in der Norddeutschen Tiefebene bei Soltau [The earthquake of June 2, 1977, in the North German Plain near Soltau]. Geologisches Jahrbuch Reihe E, 18, 318.Google Scholar
Leydecker, G. (2011). Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008 [Earthquake catalog for Germany and peripheral areas for the years 800 to 2008]. Geologisches Jahrbuch Reihe E, 59, 1198.Google Scholar
Littke, R., Scheck-Wenderoth, M., Brix, M. R. and Nelskamp, S. (2008). Subsidence, inversion and evolution of the thermal field. In Littke, R., Bayer, U., Gajewski, D. and Nelskamp, S., eds., Dynamics of Complex Intracontinental Basins – The Central European Basin System. Springer-Verlag, Berlin-Heidelberg, pp. 125141.Google Scholar
Ludwig, A. O. (2011). Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede [Two distinctive push moraines: Peski/Belarus and Jasmund, Rügen Island/Northeast Germany – common features and difference]. E&G–Quaternary Science Journal, 60, 464487, doi.org/10.3285/eg.60.4.06.Google Scholar
Lüthgens, C. and Böse, M. (2011). Chronology of Weichselian main ice marginal positions in north-eastern Germany. E&G – Quaternary Science Journal, 60, 236247, doi.org/10.3285/eg.60.2-3.02.Google Scholar
Marotta, A. M., Bayer, U. and Thybo, H. (2000). The legacy of the NE German Basin-Reactivation by compressional buckling. Terra Nova, 12, 132140, doi.org/10.1046/j.1365-3121.2000.123296.x.CrossRefGoogle Scholar
Marotta, A. M., Bayer, U., Thybo, H. and Scheck, M. (2002). Origin of regional stress in the North German basin: results from numerical modeling. Tectonophysics, 360, 245264, doi.org/10.1016/S0040-1951(02)00358-X.Google Scholar
Marotta, A. M., Mitrovica, J. X., Sabadini, R. and Milne, G. (2004). Combined effects of tectonics and glacial isostatic adjustment on intraplate deformation in central and northern Europe: applications to geodetic baseline analyses. Journal of Geophysical Research, 109, B01413, doi.org/10.1029/2002JB002337.Google Scholar
Mazur, S., Scheck-Wenderoth, M. and Krzywiec, P. (2005). Different modes of the Late Cretaceous – Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences, 94, 782798, doi.org/10.1007/s00531-005-0016-z.Google Scholar
McCann, T. (2008). Introduction and overview. In McCann, T., ed., The Geology of Central Europe: Precambrian and Palaeozoic. The Geological Society of London, pp. 120.Google Scholar
McKenna, J., Stein, S. and Stein, C. A. (2007). Is the New Madrid seismic zone hotter and weaker than its surroundings? In S. Stein and S. Mazzotti, eds., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America, Special Paper 425, pp. 167–175, doi.org/10.1130/2007.2425(12).Google Scholar
Meinsen, J., Winsemann, J., Roskosch, J. et.al. (2014). Climate control on the evolution of Late Pleistocene alluvial‐fan and aeolian sand‐sheet systems in NW Germany. Boreas, 43, 4266, doi.org/10.1111/bor.12021.Google Scholar
Meschede, M. (2015). Geologie Deutschlands: Ein prozessorientierter Ansatz [Geology of Germany: A Process-Oriented Approach]. Springer, Berlin/Heidelberg, 249 pp.Google Scholar
Mey, J., Scherler, D., Wickert, A. D. et al. (2016). Glacial isostatic uplift of the European Alps. Nature Communications, 7, 13382, doi.org/10.1038/ncomms13382.Google Scholar
Mörner, N. A. (1978). Faulting, fracturing, and seismicity as functions of glacio-isostasy in Fennoscandia. Geology, 6, 4145, doi.org/10.1130/0091-7613(1978)6<41:FFASAF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Müller, U. and Obst, K. (2008). Junge halokinetische Bewegungen im Bereich der Salzkissen Schlieven und Marnitz in Südwest-Mecklenburg [Young halokinetic movements in the area of the salt pillows Schlieven and Marnitz in south-west Mecklenburg]. Brandenburgische Geowissenschaftliche Beiträge, 15, 147154.Google Scholar
Müller, B., Scheffzük, F., Schilling, M. et al. (2020a). Reservoir-Management and Seismicity – Strategies to Reduce Induces Seismicity. DGMK-Research Report 776.Google Scholar
Müller, K., Polom, U., Winsemann, J. et al. (2020b). Structural style and neotectonic activity along the Harz Boundary Fault, northern Germany: a multimethod approach integrating geophysics, outcrop data and numerical simulations. International Journal of Earth Sciences, 109, 18111835, doi.org/10.1007/s00531-020-01874-0.Google Scholar
Norton, K. P. and Hampel, A. (2010). Postglacial rebound promotes glacial re‐advances – a case study from the European Alps. Terra Nova, 22, 297302, doi.org/10.1111/j.1365-3121.2010.00946.x.Google Scholar
Pharaoh, T. C., Dusar, M., Geluk, M. C. et al. (2010). Tectonic evolution. In Doornenbal, J. C. and Stevenson, A. G., eds., Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten, pp. 2557.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2018). Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745, 338348, doi.org/10.1016/j.tecto.2018.08.004.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2019). The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet. DEUQUA Special Publications, 2, 6167, doi.org/10.5194/deuquasp-2-61-2019.Google Scholar
Reicherter, K., Kaiser, A. and Stackebrandt, W. (2005). The Post-Glacial landscape evolution of the North German Basin: morphology, neotectonics and crustal deformation. International Journal of Earth Science, 94, 10831093, doi.org/10.1007/s00531-005-0007-0.Google Scholar
Reinecker, J., Heidbach, O. and Müller, B. (2004). World Stress Map (2004 release). www.world-stress-map.org.Google Scholar
Roskosch, J., Winsemann, J., Polom, U. et al. (2015). Luminescence dating of ice‐marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas, 44, 103126, doi.org/10.1111/bor.12083.Google Scholar
Scheck-Wenderoth, M. and Lamarche, J. (2005). Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics, 397, 143165, doi.org/10.1016/j.tecto.2004.10.007.Google Scholar
Schulz, R., Suchi, E., Öhlschläger, D. et al. (2013). Geothermieatlas zur Darstellung möglicher Nutzungskonkurrenzen zwischen CCS und Tiefer Geothermie [Geothermal atlas for illustration of possible competing usage between CCS and deep geothermal energy]. Leibniz-Institut für Angewandte Geophysik und Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, p. 107.Google Scholar
Seidel, E., Meschede, M. and Obst, K. (2018). The Wiek Fault System east of Rügen Island: origin, tectonic phases and its relationship to the Trans-European Suture Zone. In Kilhams, B., Kukla, P. A., Mazur, S. et al., eds., Mesozoic Resource Potential in the Southern Permian Basin. Geological Society, London, Special Publication, Vol. 469, pp. 59–82, doi.org/10.1144/SP469.10.Google Scholar
Stackebrandt, W. (2004). Zur Neotektonik in Norddeutschland [On neotectonics in Northern Germany]. Zeitschrift für geologische Wissenschaften, 32, 8595.Google Scholar
Stackebrandt, W. (2005). Neotektonische Aktivitätsgebiete in Brandenburg (Norddeutschland) [Areas of neotectonic activity in Brandenburg (Northern Germany)]. Brandenburgische Geowissenschaftliche Beiträge, 12, 165172.Google Scholar
Stackebrandt, W. (2008). Zur Neotektonik der Niederlausitz [On neotectonics of the Niederlausitz]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159, 117122, doi.org/10.1127/1860-1804/2008/0159-0117.Google Scholar
Stackebrandt, W. (2015). Neotektonische Beanspruchung [Neotonic stress]. In Stackebrandt, W. and Franke, D., eds., Geologie von Brandenburg. Schweizerbart, Stuttgart, pp. 480487.Google Scholar
Stewart, I. S., Sauber, J. and Rose, J. (2000). Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19, 13671389, doi.org/10.1016/S0277-3791(00)00094-9.Google Scholar
Sykes, L. R. (1978). Intraplate seismicity, reactivation of pre-existing zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Reviews of Geophysics and Space Physics, 16, 621688, doi.org/10.1029/RG016i004p00621.Google Scholar
Torsvik, T. H. and Cocks, L. R. M. (2017). The integration of palaeomagnetism, the geological record and mantle tomography in the location of ancient continents. Geological Magazine, 156, 242260, doi.org/10.1017/S001675681700098X.Google Scholar
Uta, P., Brandes, C., Bönnemann, C., Gestermann, N., Kaiser, D., Plenefisch, T. and Winsemann, J. (2018). Re-evaluation of the Rotenburg mainshock 2004. DGMK-Project 806, Final Report, 85 pp.Google Scholar
van Balen, R. T., Bakker, M. A. J., Kasse, C., Wallinga, J. and Woolderink, H. A. G. (2019). A Late Glacial surface rupturing earthquake at the Peel Boundary fault zone, Roer Valley Rift System, the Netherlands. Quaternary Science Reviews, 218, 254266, doi.org/10.1016/j.quascirev.2019.06.033.CrossRefGoogle Scholar
Vanneste, K., Camelbeeck, T., Verbeeck, K. and Demoulin, A. (2018). Morphotectonics and past large earthquakes in Eastern Belgium. In Demoulin, A., ed., Landscapes and Landforms of Belgium and Luxembourg, World Geomorphological Landscapes. Springer, Cham, pp. 215236, doi.org/10.1007/978-3-319-58239-9_13.Google Scholar
van Wees, J.-D., Stephenson, R. A., Ziegler, P. A. et al. (2000). On the origin of the Southern Permian basin, central Europe. Marine and Petroleum Geology, 17, 4359, doi.org/10.1016/S0264-8172(99)00052-5.Google Scholar
Winsemann, J., Brandes, C. and Polom, U. (2011). Response of a proglacial delta to rapid high‐amplitude lake‐level change: an integration of outcrop data and high‐resolution shear wave seismics. Basin Research, 23, 2252, doi.org/10.1111/j.1365-2117.2010.00465.x.Google Scholar
Winsemann, J., Lang, J., Polom, U. et al. (2018). Ice‐marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large‐scale depositional architecture. Boreas, 47, 9731002, doi.org/10.1111/bor.12317.Google Scholar
Winsemann, J., Koopmann, H., Tanner, D.C. et al. (2020). Seismic interpretation and structural restoration of the Heligoland glaciotectonic thrust-fault complex: implications for multiple deformation during (pre-)Elsterian to Warthian ice advances into the southern North Sea Basin. Quaternary Science Reviews, 227, 106068, doi.org/10.1016/j.quascirev.2019.106068.Google Scholar

References

Badura, J. and Przybylski, B. (2000). Mapa neotektoniczna Dolnego Śląska [Neotectonic Map of Lower Silesia]. Unpublished report, Archive of Polish Geological Institute, Lower Silesia Division, Wrocław, map and 43 pp. (in Polish).Google Scholar
Badura, J., Zuchiewicz, W., Štěpančíková, P. et al. (2007). The Sudetic Marginal Fault: a young morphotectonic feature of central Europe. Acta Geodynamica et Geomaterialia, 148, 729.Google Scholar
Belzyt, S., Pisarska-Jamroży, M., Bitinas, A. et al. (2021). Repetitive Late Pleistocene soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania. Sedimentology, doi.org/10.1111/sed.12883.Google Scholar
Birkenmajer, K. (1976). Plejstoceńskie deformacje tektoniczne w Szaflarach na Podhalu [Pleistocene tectonic deformations in Szaflary, Podhale region]. Rocznik Polskiego Towarzystwa Geologicznego, 46, 309324 (in Polish).Google Scholar
Brandes, C., Polom, U. and Winsemann, J. (2011). Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Research, 23, 5364, doi.org/10.1111/j.1365-2117.2010.00468.x.Google Scholar
Brandes, C., Winsemann, J., Roskosch, J. et al. (2012). Activity along the Osning Thrust in central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quaternary Science Reviews, 38, 4962, doi.org/10.1016/j.quascirev.2012.01.021.Google Scholar
Brodzikowski, K. (1995). Pleistocene glacigenic deposition in a tectonically active, subsiding zone: the Kleszczów Graben, central Poland. In Ehlers, J., Kozarski, S. and Gibbard, P., eds., Glacial Deposits in North-East Europe. Brookfield Balkema, A. A. Rotterdam, pp. 361385.Google Scholar
Brodzikowski, K., Gotowała, R., Kasza, L. and van Loon, A. J. (1987a). The Kleszczów Graben (central Poland): reconstruction of the deformational history and inventory of the resulting soft-sediment deformation structures. In Jones, M. E. and Preston, R. M. F., eds., Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publication, Vol. 29, pp. 241–254, doi.org/10.1144/GSL.SP.1987.029.01.18.Google Scholar
Brodzikowski, K., Hałuszczak, A., Krzyszkowski, D. and van Loon, A. J. (1987b). Genesis and diagnostic value of large-scale gravity-induced penecontemporaneous deformation horizons in Quaternary sediments of the Kleszczów Graben (central Poland). In Jones, M. E. and Preston, R. M. F., eds., Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publication, Vol. 29, pp. 287–298, doi.org/10.1144/GSL.SP.1987.029.01.22.Google Scholar
Brodzikowski, K., van Loon, A. J. and Zieliński, T. (1997). Development of a lake in a subsiding basin in front of a Saalian ice sheet (Kleszczów Graben, central Poland). Sedimentary Geology, 113, 5580, doi.org/10.1016/S0037-0738(97)00046-8.Google Scholar
Chmal, R. (2006). Objaśnienia do szczegółowej mapy geologicznej Polski w skali 1:50000. Arkusz Piła [Explanations to the Detailed Geological Map of Poland, Scale 1:50000. Sheet Piła]. Polish Geological Institute Press, Warsaw (in Polish).Google Scholar
Dadlez, R. and Dembowska, J. (1965). Budowa geologiczna parantyklinorium pomorskiego [The geology of the Pomeranian para-anticlinorium]. Prace Instytutu Geologicznego 40, 175 pp. (in Polish).Google Scholar
Dadlez, R. (1979). Tektonika Kompleksu Cechsztyńsko–Mezozoicznego [Tectonics of the Zechstein–Mesozoic Complex]. In Jaskowiak-Schoeneich, M., ed., Budowa geologiczna niecki szczecińskiej i bloku Gorzowa [The Geological Structure of the Szczecin Trough and the Gorzow Block]. Prace Instytutu Geologicznego, 96, pp. 108121 (in Polish).Google Scholar
Dzierżek, J. (1997). Geology of sub-Quaternary basement and stratigraphy of Quaternary sediments in the middle Noteć river valley, western Poland. Annales Societatis Geologorum Poloniae, 67, 5781.Google Scholar
Gotowała, R. and Hałuszczak, A. (2002). The Late Alpine structural development of the Kleszczow Graben (Central Poland) as a result of reactivation of the pre-existing, regional dislocations. EGU Stephan Mueller Special Publication, 1, 137150, doi.org/10.5194/smsps-1-137-2002.Google Scholar
Gregersen, S., Wiejacz, P., Dębski, W. et al. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 164, 6374, doi.org/10.1016/j.pepi.2007.06.005.Google Scholar
Gruszka, B. (2007). The Pleistocene glaciolacustrine sediments in the Bełchatów mine (central Poland): endogenic and exogenic controls. Sedimentary Geology, 193, 149166, doi.org/10.1016/j.sedgeo.2006.01.008.Google Scholar
Gruszka, B. and van Loon, A. J. (2007). Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). Sedimentary Geology, 193, 93104, doi.org/10.1016/j.sedgeo.2006.01.009.Google Scholar
Gruszka, B. and Zieliński, T. (1996). Gravity flow origin of glaciolacustrine sediments in a tectonically active basin (Pleistocene, central Poland). Annales Societatis Geologorum Poloniae, 66, 5981.Google Scholar
Guterch, B. (2009). Sejsmiczność Polski w świetle danych histycznych [Seismicity of Poland in the light of historical records]. Przegląd Geologiczny, 57, 513520. (in Polish)Google Scholar
Guterch, B., Lewandowska-Marciniak, H. and Niewiadomski, J. (2005). Earthquakes recorded in Poland along the Pieniny Klippen Belt, Western Carpathians. Acta Geologica Polonica, 53, 2844.Google Scholar
Hoffmann, G. and Reicherter, K. (2012). Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101, 351363, doi.org/10.1007/s00531-010-0633-z.Google Scholar
Jarosiński, M. (2006). Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly, 50, 303321.Google Scholar
Kurzawa, M. (2003). The sedimentary record and rates of Quaternary vertical tectonic movements in NW Poland. Quaternary International, 101, 137148, doi.org/10.1016/S1040-6182(02)00096-4.Google Scholar
Laskowska-Wysoczańska, W. (1995). Neotectonic and glacial control on geomorphic development of middle and eastern parts of the Sandomierz Basin and the Carpathian margin. Folia Quaternaria, 66, 105122.Google Scholar
Migoń, P. and Łach, J. (1998). Geomorphological evidence of neotectonics in the Kaczawa sector of the Sudetic marginal fault, southwestern Poland. Geologica Sudetica, 31, 307316.Google Scholar
Migoń, P., Krzyszkowski, D. and Gogół, K. (1998). Geomorphic evolution of the front of the Sudetes between Dobromierz and Paszowice and adjacent areas, with particular reference to the fluvial systems. Geologica Sudetica, 31, 289305.Google Scholar
Mojski, J. E. (1985). Geology of Poland. Volume I Stratigraphy, Part 3b Cainozoic. Geological Press, Warsaw, 248 pp.Google Scholar
Morawski, W. (2009a). Neotectonics induced by ice-sheet advances in NE Poland. Geologos, 15, 199217, doi.org/10.2478/v10118-009-0004-z.Google Scholar
Morawski, W. (2009b). Differences in the regional stratigraphy of NE Poland caused by vertical movements due to glacioisostasy. Geologos, 15, 235250, doi.org/10.2478/v10118-009-0006-x.Google Scholar
Mörner, N. A. (1991). Intense earthquakes and seismotectonics as a function of glacial isostasy. Tectonophysics, 188(3–4), 407410, doi.org/10.1016/0040-1951(91)90471-4.Google Scholar
Olszak, I. (1999). Chronostratigraphy of the western part of the cliff of Kępa Swarzewska near Jastrzębia Góra (Baltic Coast). Peribalticum, 7, 4163.Google Scholar
Pagaczewski, J. (1972). Catalogue of earthquakes in Poland in 1000–1972 years. Publications of the Institute of Geophysics Polish Academy of Sciences, 51, 336.Google Scholar
Pikies, R. (2007). Influence of tectonic processes on the relief of sub-Quaternary surface and influence of these processes on formation of Quaternary in deep-water part of the southern Baltic Sea. MELA Conference, Living Morphotectonics of the European Lowland, Cedynia, Poland, pp. 60–70.Google Scholar
Piotrowski, A., Brose, F., Sydor, P., Seidler, J. and Pisarska-Jamroży, M. (2012). Stanowisko 3 – Siekierki. Osady Interglacjału Eemskiego w Siekierkach [Eemian interglacial deposits at Siekierki]. In Błaszkiewicz, M. and Brose, F., eds., Korelacja osadów plejstocenu na pograniczu polsko-niemieckim w Dolinie Dolnej Odry [Pleistocene Sediment Correlations in the Lower Odra Region]. Polish Geological Institute Press, Warsaw, pp. 161163 (in Polish).Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2018). Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745, 338348, doi.org/10.1016/j.tecto.2018.08.004.Google Scholar
Pisarska-Jamroży, M. and Woźniak, P.P. (2019). Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326, 225238, doi.org/10.1016/j.geomorph.2018.01.015.Google Scholar
Pisarska-Jamroży, M., van Loon, A. J., Roman, M. and Mleczak, M. (2019a). Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisostatic crustal rebound. Geomorphology, 326, 239251, doi.org/10.1016/j.geomorph.2018.01.010.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A. and Woronko, B. (2019b). Seismic shocks, periglacial conditions and glacitectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32, 6377, doi.org/10.5200/baltica.2019.1.6.Google Scholar
Przybylski, B. (1998). Late Quaternary evolution of the Nysa Kłodzka river valley in the Sudetic Foreland, southwestern Poland. Geologia Sudetica, 31, 197211.Google Scholar
Rodríguez-Pascua, M. A., Calvo, J. P., De Vicente, G. and Gomez-Gras, D. (2000). Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135, 117135, doi.org/10.1016/S0037-0738(00)00067-1.Google Scholar
Różycka, M. and Migoń, P. (2018). Tectonic geomorphology of the Sudetes Mountains (central Europe) – a review and re-appraisal. Annales Societatis Geologorum Poloniae, 87, 275300.Google Scholar
Rühle, E. (1973). Ruchy neotektoniczne w Polsce [Neotectonic movements in Poland]. In Rühle, E., ed., Metodyka badań osadów czwartorzędowych [Methodology of research of Quaternary sediments]. Geological Press, Warsaw, pp. 1331 (in Polish).Google Scholar
Rühle, E. (1978). Mapa geologiczna Polski bez utworów kenozoicznych i kredowych 1: 500 000 [Geological map of Poland without Cenozoic and Cretaceous strata 1: 500,000]. Instytut Geologiczny, Warsaw (in Polish).Google Scholar
Ryka, W. (1989). Podłoże krystaliczne polskiej części południowego Bałtyku [Crystaline basement of the South Baltic Sea]. Kwartalnik Geologiczny, 34, 2136 (in Polish).Google Scholar
Ryka, W. and Dadlez, R. (1995). Podłoże krystaliczne [Crystalline basement]. In Mojski, J. E., ed., Atlas geologiczny południowego Bałtyku [Geological Atlas of the South Baltic Sea]. Polish Geological Institute Press, Warsaw, (in Polish).Google Scholar
Skompski, S. (2001). Objaśnienia do szczegółowej mapy geologicznej Polski w skali 1:50000, Arkusz Puck [Explanations to the detailed Geological Map of Poland, Scale 1:50000. Sheet Puck]. Polish Geological Institute Press, Warsaw, 40 pp. (in Polish).Google Scholar
Słodkowska, B. (2009). Palynology of the Palaeogene and Neogene from Warmia and Mazury areas (NE Poland). Geologos, 15, 219234, doi.org/10.2478/v10118-009-0005-y.Google Scholar
Štěpančíková, P., Stemberk, J., Vilímek, V. and Košťák, B. (2008). Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology, 102, 6880, doi.org/10.1016/j.geomorph.2007.06.016.Google Scholar
Štěpančíková, P., Hók, J., Nývlt, D. et al. (2010). Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics, 485, 269282, doi.org/10.1016/j.tecto.2010.01.004.Google Scholar
Tokarski, A. K. and Świerczewska, E. (2005). Neofractures versus inherited fractures in structural analysis: a case study from Quaternary fluvial gravels. Annales Societatis Geologorum Poloniae, 75, 95104.Google Scholar
Tokarski, A. K., Świerczewska, E. and Zuchiewicz, W. (2007). Fractured clasts in neotectonics reconstructions: an example from Nowy Sącz Basin, western Outer Carpathians, Poland. Studia Quaternaria, 24, 4752.Google Scholar
Tylmann, K., Rinterknecht, V. R., Woźniak, P. P. et al. (2019a). Retreat of the southern front of the last Scandinavian Ice Sheet: dates and rates. 20th Congress of the International Union for Quaternary Research (INQUA). Book of Abstracts, app.oxfordabstracts.com/events/ 574/ program-app/titles.Google Scholar
Tylmann, K., Rinterknecht, V. R., Woźniak, P. P. et al.(2019b). The local last glacial maximum of the southern Scandinavian Ice Sheet front: cosmogenic nuclide dating of erratics in northern Poland. Quaternary Science Reviews, 219, 3646, doi.org/10.1016/j.quascirev.2019.07.004.Google Scholar
van Loon, A. J., Brodzikowski, K. and Zieliński, T. (1995). Shock-induced resuspension deposits from a Pleistocene proglacial lake (Kleszczów Graben, central Poland). Journal of Sedimentary Research, A65, 417422, doi.org/10.1306/D42680DB-2B26-11D7-8648000102C1865D.Google Scholar
van Loon, A. J. and Pisarska-Jamroży, M. (2014). Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacioisostatic rebound. Sedimentary Geology, 300, 110, doi.org/10.1016/j.sedgeo.2013.11.006.Google Scholar
van Loon, A. J., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M. and Soms, J. (2016). Seismites resulting from high‑frequency, high‑magnitude earthquakes in Latvia caused by Late Glacial glacio‑isostatic uplift. Journal of Palaeogeography, 5, 363380, doi.org/10.1016/j.jop.2016.05.002.Google Scholar
van Loon, A. J., Pisarska-Jamroży, M. and Woronko, B. (2020). Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks. Geological Quarterly, 64, 626640, doi.org/10.7306/gq.1546.Google Scholar
Wiejacz, P. and Dębski, W. (2001). New observation of Gulf of Gdansk seismic events. Physics of the Earth and Planetary Interiors, 123, 233245, doi.org/10.1016/S0031-9201(00)00212-0.Google Scholar
Witkowski, A. (1989). Ewolucja i tektonika staropaleozoicznego kompleksu strukturalnego południowego Bałtyku [Evolution and tectonics of the Lower Palaeozoic structural complex in the southern Baltic Sea]. Kwartalnik Geologiczny, 34, 5166 (in Polish with English summary).Google Scholar
Woźniak, P. P. and Pisarska-Jamroży, M. (2016). Rzucewo-soft-sediment deformation structures in glaciolimnic sediments-different trigger mechanisms. In Sokołowski, R. and Moskalewicz, D., eds., Quaternary Geology of North-Central Poland from the Baltic Coast to the LGM Limit, University of Gdańsk, pp. 53–67.Google Scholar
Woźniak, P. P. and Pisarska-Jamroży, M. (2018). Debris flows with soft-sediment clasts in a Pleistocene glaciolacustrine fan (Gdańsk Bay, Poland). Catena, 165, 178191, doi.org/10.1016/j.catena.2018.01.022.Google Scholar
Woźniak, P. P., Pisarska-Jamroży, M. and Elwirski, Ł. (2018). Orientation of gravels and soft-sediment clasts in subaqueous debrites – implications for palaeodirection reconstruction: case study from Puck Bay, northern Poland. Bulletin of the Geological Society of Finland, 90, 161174, doi.org/10.17741/bgsf/90.2.002.Google Scholar
Wójcik, A. (2003). Czwartorzęd zachodniej części Dołów Jasielsko-Sanockich (polskie Karpaty Zewnętrzne) [The Quaternary of the western part of Jasielsko-Sanockie Doły (Polish Outer Carpathians)]. Prace Państwowego Instytutu Geologicznego, 178, 148 pp.Google Scholar
Żelaźniewicz, A., Aleksandrowski, P., Buł, Z. et al. (2011). Regionalizacja tektoniczna Polski [Tectonic division of Poland]. Committee of Geological Sciences, Polish Academy of Sciences Press, Wrocław, 60 pp.Google Scholar
Znosko, J. (1998). Mapa tektoniczna Polski [Tectonic map of Poland]. Polish Geological Institute Press, Warsaw (in Polish).Google Scholar
Zuchiewicz, W. (1995). Selected aspects of neotectonics of the Polish Carpathians. Folia Quaternaria, 66, 145204.Google Scholar
Zuchiewicz, W., Badura, J., Jarosiński, M. and Commission on Neotectonics, Committee for Quaternary Research, Polish Academy of Sciences (2007). Neotectonics of Poland: an overview of active faulting. Studia Quaternaria, 24, 520.Google Scholar

References

Belzyt, S., Nartišs, M., Pisarska-Jamroży, M., Woronko, B. and Bitinas, A. (2018a). Large-scale glaciotectonically-deformed Pleistocene sediments with deformed layers sandwiched between undeformed layers, Baltmuiža site, Western Latvia. In M. Pisarska-Jamroży and A. Bitinas, eds., Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, pp. 38–42.Google Scholar
Belzyt, S., Pisarska-Jamroży, M., Bitinas, A., Damušytė, A. and Woronko, B. (2018b). Soft-sediment deformation structures in the Pleistocene meandering-river floodplain (Slinkis Outcrop, Central Lithuania). In Pisarska-Jamroży, M. and Bitinas, A., eds., Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, pp. 16–20.Google Scholar
Belzyt, S., Pisarska-Jamroży, M., Bitinas, A. et al. (2021). Repetitive Late Pleistocene soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania. Sedimentology, doi.org/10.1111/sed.12883.Google Scholar
Bitinas, A. (2012). Implications of the paleoseismicity of the Eastern Baltic Sea Region. Quaternary International, 52, 279280, doi.org/10.1016/j.quaint.2012.07.230.Google Scholar
Bitinas, A. and Lazauskienė, J. (2011). Implications of palaeoseismic events based on the analysis of the structures of the Quaternary deposits. Baltica, 24, 127130 (in Lithuanian).Google Scholar
Bitinas, A. and Damušytė, A. (2018). Ventės Ragas outcrop and Juodikiai quarry: soft-sediment deformation structures of enigmatic genesis in the Lithuanian Maritime Region. In Pisarska-Jamroży, M. and Bitinas, A., eds., Soft-sediment Deformation Structures and Palaeoseismic phenomena in the South-eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, 2630.Google Scholar
Boborikin, A. M., Avotinia, I. Y., Yemelianov, A. P., Sildvee, A. and Suveizdis, P. (1993). Catalogue of historical earthquakes of Belarus and the Baltic Region. Seismological Report of Seismic Stations of Minsk–Pleshchenitsi and Naroch for 1988. Minsk, pp. 126137.Google Scholar
Brandes, C., Steffen, H., Steffen, R. and Wu, P. (2015). Intraplate seismicity in northern central Europe is induced by the last glaciation. Geology, 43, 611614, doi.org/10.1130/G36710.1.Google Scholar
Brandes, C., Steffen, H., Sandersen, P. B. E., Wu, P. and Winsemann, J. (2018). Glacially induced faulting along the NW segment of the Sorgenfrei–Tornquist Zone, northern Denmark: implications for neotectonics and Lateglacial fault-bound basin formation. Quaternary Science Reviews, 189, 149168, doi.org/10.1016/j.quascirev.2018.03.036.Google Scholar
Damušytė, A. and Bitinas, A. (2018). Giruliai mega landslide (Litorina Sea palaeo cliff): possible relict of palaeoseismic event. In Pisarska-Jamroży, M. and Bitinas, A., eds., Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, p. 31.Google Scholar
Dodonov, A. E., Namestnikov, Y. G. and Jakushova, A. F. (1976). Noveyshaya tektonika yugo-vostochnoy chasti Baltiyskoy sinekliz [The Latest Tectonics of the South-eastern Part of the Baltic Syneclise]. Moscow University Press, Moscow (in Russian).Google Scholar
Druzhinina, O., Bitinas, A., Molodkov, A. and Kolesnik, T. (2017). Palaeoseismic deformations in the Eastern Baltic region (Kaliningrad District of Russia). Estonian Journal of Earth Sciences, 66, 119129, doi.org/10.3176/earth.2017.09.Google Scholar
Ekström, G., Nettles, M. and Abers, G. A. (2003). Glacial earthquake. Science, 302, 622624, doi.org/10.1126/science.1088057.Google Scholar
Ekström, G., Nettles, M. and Tsai, V. C. (2006). Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311, 17561758, 10.1126/science.1122112.Google Scholar
Gregersen, S. and Basham, P. V. (1989). Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. NATO ASI Series, Vol. 266. Kluwer Academic Publishers, Dordrecht. doi.org/10.1007/978-94-009-2311-9.Google Scholar
Gregersen, S., Wiejacz, P., Dębski, W. et al. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 164, 6374, doi.org/10.1016/j.pepi.2007.06.005.Google Scholar
Grube, A. (2019). Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquake evidence during the younger Weichselian and Holocene. International Journal of Earth Sciences, 108(3), 845861, doi.org/10.1007/s00531-019-01681-2.Google Scholar
Grünthal, G. and GSHAP Region 3 Working Group (1999). Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3. Annali di Geofisica, 42(6), 9991011, doi.org/10.4401/ag-3783.Google Scholar
Grünthal, G. and Riedel, P. (2007). Zwei angebliche Erdbeben in den Jahren 1303 und 1328 im heutigen Raum Kaliningrad [Two supposed earthquakes in 1303 and 1328 in what is now Kaliningrad region]. Zeitschrift für Geologische Wissenschaften, 35(3), 157163.Google Scholar
Grünthal, G. and Stromeyer, D. (1995). Rezentes Spannungsfeld und Seismizitat des baltischen Raumes und angrenzender Gebiete – ein Ausdruck aktueller geodynamischer Prozesse [Recent stress field and seismicity of the Baltic region and adjacent areas – an expression of current geodynamic processes]. Brandenburgische Geowissenschaftliche Beitrage, 2, 6976.Google Scholar
Jakobsson, M., O’Regan, G. M., Greenwood, S. L. et al. (2016). Postglacial tectonic structures and mass wasting in Lake Vättern, southern Sweden. Geological Society Memoir, 46(1), 119120, doi.org/10.1144/M46.58.Google Scholar
Karabanov, A. K. and Yelovicheva, Ya. K. (1997). Geological objects of excursions. “Zaslavl” quarry. In Excursion Guidebook ‘Quaternary Deposits and Neotectonics in the Area of Pleistocene Glaciations’, May 12–16, 1997. Minsk, pp. 1518.Google Scholar
Krievāns, M. (2015). Formation of the Hydrographic Network in the Lower Gauja Spillway Valley Adjoining Area during the Late Weichselian Deglacial. Summary of PhD thesis, University of Latvia, Riga.Google Scholar
Lazauskienė, J., Stephenson, R. A, Šliaupa, S. and van Wees, J.-D. (2002). 3D flexural model of the Silurian Baltic Basin. Tectonophysics, 346, 115135, 10.1016/S0040-1951(01)00231-1.Google Scholar
Lazauskienė, J., Pačėsa, A. and Satkūnas, J. (2012). Seismotectonic and seismic hazard maps of Lithuania – recent implications of intracratonic seismicity in the Eastern Baltic Region. Geologija, 54, 19, doi.org/10.6001/geologija.v54i1.2364.Google Scholar
Lukševičs, E., Stinkulis, G., Mūrnieks, A. and Popovs, K. (2012). Geological evolution of the Baltic Artesian Basin. In Delina, A., ed., Highlights of Groundwater Research in the Baltic Artesian Basin. University of Latvia, Riga, pp. 753.Google Scholar
Mattila, J., Ojala, A. E. K. et al.(2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022.Google Scholar
Mörner, N. A. (2005). An interpretation and catalogue of Paleoseismicity in Sweden. Tectonophysics, 408, 265307, doi.org/10.1016/j.tecto.2005.05.039.Google Scholar
Mörner, N. A. (2008). Tsunami events within Baltic. Polish Geological Institute Special Papers, 23, 7176.Google Scholar
Nartišs, M. (2014). Ice Meltwater Lakes of Northern Vidzeme and Middle Gauja Lowlands during the Late Weichselian Deglaciation. Summary of PhD thesis, University of Latvia, Riga.Google Scholar
Nartišs, M., Woronko, B., Pisarska-Jamroży, M., Belzyt, S. and Bitinas, A. (2018). Injection structures and load casts in lagoon sediments (Sārnate outcrop, W Latvia). In Pisarska-Jamroży, M. and Bitinas, A., eds., Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, pp. 3237.Google Scholar
Nikonov, A. A. (2005). Following the Kaliningrad Earthquake. Priroda, 3, 4753.Google Scholar
Nikonov, A. A. (2011). Surface disturbances connected with the Kaliningrad earthquake of September 21, 2004, and their correlation with macroseismic scales. Seismic Instruments, 47, 148157, doi.org/10.3103/S074792391102006X.Google Scholar
Nikulin, V. (2011). Assessment of the seismic hazard in Latvia. Version of 2007 year. Material Science and Applied Chemistry, 24, 110115.Google Scholar
Pačėsa, A. and Šliaupa, S. (2011). Seismic activity and seismic catalogue of the East Baltic region. Geologija, 53(3), 134146, doi.org/10.6001/geologija.v53i3.1894.Google Scholar
Pačėsa, A., Šliaupa, S. and Satkūnas, J. (2005). Recent earthquake activity in the Baltic region and seismological monitoring in Lithuania. Geologija, 50, 818 (in Lithuanian).Google Scholar
Paškevičius, J. (1997). The Geology of the Baltic Republics. Lithuanian Geological Survey, Vilnius.Google Scholar
Pisarska-Jamroży, M. and Bitinas, A. (2018). Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-Eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius.Google Scholar
Pisarska-Jamroży, M. and Belzyt, S. (2019). Is there any relationship between occurrence of soft-sediment deformation structures caused by Pleistocene seismicity and induced by glaciotectonics? ICHEPS-19 7th International Colloquium on Historical Earthquakes & Paleoseismology Studies, 4–6 November 2019, Barcelona, 32.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2018a). Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745, 338348, doi.org/10.1016/j.tecto.2018.08.004.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A. et al. (2018b). A glaciolacustrine succession (Dyburiai outcrop, NW Lithuania) with numerous deformed layers sandwiched between undeformed layers. In M. Pisarska-Jamroży and A. Bitinas, eds., Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-Eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21 September 2018. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, pp. 43–48.Google Scholar
Pisarska-Jamroży, M. and Woźniak, P. P. (2019). Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326, 225238, doi.org/10.1016/j.geomorph.2018.01.015.Google Scholar
Pisarska-Jamroży, M., Belzyt, S, Börner, A. et al. (2019a). The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet. DEUQUA Special Publications, 2, 6167, doi.org/10.5194/deuquasp-2-1-2019.Google Scholar
Pisarska-Jamroży, M., van Loon, A. J., Roman, M. and Mleczak, M. (2019b). Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisostatic crustal rebound. Geomorphology, 326, 239251, doi.org/10.1016/j.geomorph.2018.01.010.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A. and Woronko, B. (2019c). Seismic shocks, periglacial conditions and glaciotectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32, 6377, doi.org/10.5200/baltica.2019.1.6.Google Scholar
Podolskiy, E. A. and Walter, F. (2016). Cryoseismology. Reviews of Geophysics, 54, 708758, doi.org/10.1002/2016RG000526.Google Scholar
Popovs, K., Saks, T. and Jātnieks, J. (2015). A comprehensive approach to the 3D geological modelling of sedimentary basins: example of Latvia, the central part of the Baltic Basin. Estonian Journal of Earth Sciences, 64, 173188.Google Scholar
Rogozhin, E. A., Ovsyuchenko, A. N., Novikov, S. S. and Marakhanov, A. V. (2010). Active tectonic of the 21 September 2004 Kaliningrad earthquake’s region. Voprosy inzhinernoj seismologii, 37(3), 520 (in Russian).Google Scholar
Rogozhin, E. A., Ovsyuchenko, A. N., Gorbatikov, A. V. et al. (2014). Detal’naya otsenka seysmicheskoy opasnosti territorii Kaliningrada i tektonicheskiy analiz zemletryaseniy 2004 g [Detailed seismic hazard assessment of the Kaliningrad territory and the tectonic position of the earthquakes occurred in 2004]. Inzhinernyje iziskanija, 12, 2638 (in Russian).Google Scholar
Raukas, A. and Teedumäe, A. (1997). Geology and Mineral Resources of Estonia. Estonian Academy Publishers, Tallinn.Google Scholar
Rosentau, A., Harff, J., Oja, T. and Meyer, M. (2012). Postglacial rebound and relative sea level changes in the Baltic Sea since the Litorina transgression. Baltica, 25, 113120, doi.org/10.5200/baltica.2012.25.11.Google Scholar
Saulīte, A., Kalnina, L. Stinkulis, G. and Cerina, A. (2007). A new data from the outcrop at the coastal cliff of the Baltic Sea near to Sarnate. Proceedings of the Field Symposium ‘The Quaternary of Western Lithuania: From the Pleistocene Glaciations to the Evolution of the Baltic Sea’. May 27–June 02, 2007, Plateliai, Lithuania, pp. 73–74.Google Scholar
Sharov, N. V., Malovichko, A. A. and Shukin, Yu. K. (2007). Earthquakes and Microseismicity of East European Platform – Recent Geodynamic Approach. Book 1 Earthquakes. KarNC RAN, Petrozavodsk (in Russian).Google Scholar
Šliaupa, S. (2003). Geodynamic Evolution of the Baltic Sedimentary Basin. Habilitation thesis. Institute of Geology, Vilnius.Google Scholar
Šliaupa, S. and Zakarevičius, A. (2000). Recent Stress Pattern in the Eastern Part of the Baltic Basin, Lithuania, Joint Meeting of EUROPROBE (TESZ) and PACE Projects, Zakopane. Workshop Abstracts Volume, Warsaw, 79 pp.Google Scholar
Steffen, H., Steffen, R. and Tarasov, L. (2019). Modelling of glacially-induced stress changes in Latvia, Lithuania and the Kaliningrad District of Russia. Baltica, 32, 7890, doi.org/10.5200/baltica.2019.1.7.Google Scholar
van Loon, A. J., Pisarska-Jamroży, M., Nartišs, M. and Krievâns, M. (2016). Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5, 363380, doi.org/10.1016/j.jop.2016.05.002.Google Scholar
van Loon, A. J., Pisarska-Jamroży, M. and Woronko, B. (2020). Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks. Geological Quarterly, 64, 626640, doi.org/10.7306/gq.1546.Google Scholar
Yelovicheva, Ya. K. and Drozd, Ye. N. (2005). Zaslavl’ – opornyy razrez muravinskogo mezhlednikov’ya Belarusi. [Zaslavlj – the main section of the Murava interglacial in Belarus]. Monografiya deponirovannyye v BelISA, Belarusian State University, Minsk, 81 pp. (in Russian).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×