Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T13:07:54.928Z Has data issue: false hasContentIssue false

16 - Glacially Induced Faults in Germany

from Part IV - Glacially Triggered Faulting at the Edge and in the Periphery of the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

Recent studies have shown that the low seismicity of northern Germany is characterized by fault activity caused by the decay of the Late Pleistocene (Weichselian) ice sheet. Several faults and fault systems show evidence of neotectonic activity, all of which are oriented parallel to the margin of the Pleistocene ice sheets. The timing of fault movements implies that the seismicity in northern Germany is likely induced by varying lithospheric stress conditions related to glacial isostatic adjustment, and the faults thus can be classified as glacially induced faults. For the Osning, Harz Boundary and Schaabe faults, this is supported by numerical simulation of glacial isostatic adjustment-related stress field changes. Glacial isostatic adjustment is also a likely driver for the historical and parts of the recent fault activity. Glacial isostatic adjustment is also described for the Alps, but it is difficult to clearly distinguish between reactivation of faults in the foreland of the Alps due to the Alpine collision and glacial isostatic adjustment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Hseinat, M. and Hübscher, C. (2014). Ice-load induced tectonics controlled tunnel valley evolution – instances from the southwestern Baltic Sea. Quaternary Science Reviews, 97, 121135, doi.org/10.1016/j.quascirev.2014.05.011.CrossRefGoogle Scholar
Al Hseinat, M., Hübscher, C., Lang, J. et al. (2016). Triassic to recent tectonic evolution of a crestal collapse graben above a salt-cored anticline in the Glückstadt Graben/North German Basin. Tectonophysics, 680, 5066, doi.org/10.1016/j.tecto.2016.05.008.CrossRefGoogle Scholar
Al Hseinat, M. and Hübscher, C. (2017). Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophysics, 708, 2855, doi.org/10.1016/j.tecto.2017.04.021.CrossRefGoogle Scholar
Betz, D., Führer, F., Greiner, G. and Plein, E. (1987). Evolution of the Lower Saxony Basin. Tectonophysics, 137, 127170, doi.org/10.1016/0040-1951(87)90319-2.Google Scholar
BGR (2019). Der Geodatendienst GERSEIS innerhalb der interaktiven Kartenanwendung Geoviewer der BGR [The geodata service GERSEIS within the interactive map application Geoviewer of the BGR]. biturl.top/eYFnYn.Google Scholar
Böse, M., Lüthgens, C., Lee, J. R. and Rose, J. (2012). Quaternary glaciations of northern Europe. Quaternary Science Reviews, 44, 125, doi.org/10.1016/j.quascirev.2012.04.017.CrossRefGoogle Scholar
Brandes, C., Polom, U. and Winsemann, J. (2011). Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Research, 23, 5364, doi.org/10.1111/j.1365-2117.2010.00468.x.CrossRefGoogle Scholar
Brandes, C. and Tanner, D. C. (2012). Three-dimensional geometry and fabric of shear deformation-bands in unconsolidated Pleistocene sediments. Tectonophysics, 518, 8492, doi.org/10.1016/j.tecto.2011.11.012.CrossRefGoogle Scholar
Brandes, C., Winsemann, J., Roskosch, J. et al.(2012). Activity along the Osning Thrust in Central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quaternary Science Reviews, 38, 4962, doi.org/10.1016/j.quascirev.2012.01.021.CrossRefGoogle Scholar
Brandes, C. and Winsemann, J. (2013). Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. International Journal of Earth Sciences, 102, 22552274, doi.org/10.1007/s00531-013-0914-4.CrossRefGoogle Scholar
Brandes, C., Steffen, H., Steffen, R. and Wu, P. (2015). Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43, 611614, doi.org/10.1130/G36710.1.CrossRefGoogle Scholar
Brandes, C., Igel, J., Loewer, M. et al. (2018). Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: implications for palaeoseismological studies. Sedimentary Geology, 367, 135145, doi.org/10.1016/j.sedgeo.2018.02.005.CrossRefGoogle Scholar
Brandes, C., Plenefisch, T., Tanner, D. C., Gestermann, N. and Steffen, H. (2019). Evaluation of deep crustal earthquakes in northern Germany – possible tectonic causes. Terra Nova, 31, 8393, doi.org/10.1111/ter.12372.CrossRefGoogle Scholar
Dahm, T., Cesca, S., Hainzl, S., Braun, T. and Krüger, F. (2015). Discrimination between induced, triggered and natural earthquakes close to hydrocarbon reservoirs: a probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. Journal of Geophysical Research, 120, 24912509, doi.org/10.1002/2014JB011778.Google Scholar
Dahm, T., Heimann, S., Funke, S. et al. (2018). Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M≈3 earthquakes in 2015 and 2017. Journal of Seismology, 22, 9851003, doi.org/10.1007/s10950-018-9746-9.CrossRefGoogle Scholar
Dahm, T., Krüger, F., Stammler, K. et al. (2007). The 2004 Mw 4.4 Rotenburg, northern Germany, earthquake and its possible relationship with gas recovery. Bulletin of the Seismological Society of America, 97, 691704, doi.org/10.1785/0120050149.CrossRefGoogle Scholar
Ehlers, J., Grube, A., Stephan, H. J. and Wansa, S. (2011). Pleistocene glaciations of North Germany-new results. In Ehlers, J., Gibbard, P. L. and Hughes, P. D., eds., Quaternary Glaciations: Extent and Chronology – A Closer Look. Developments in Quaternary Science, 15, pp. 149162, doi.org/10.1016/B978-0-444-53447-7.00013-1.Google Scholar
Eissmann, L. (2002). Quaternary geology of eastern Germany (Saxony, Saxon-Anhalt, South Brandenburg, Thüringia), type area of the Elsterian and Saalian stages in Europe. Quaternary Science Reviews, 21, 12751346, doi.org/10.1016/S0277-3791(01)00075-0.Google Scholar
Franke, W. (2000). The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In Franke, W., Haak, V., Onken, O. and Tanner, D., eds., Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publication, Vol. 179, pp. 35–61, doi.org/10.1144/GSL.SP.2000.179.01.05.Google Scholar
Franke, W., Cocks, L. R. M. and Torsvik, T. H. (2017). The Palaeozoic Variscan oceans revisited. Gondwana Research, 48, 257284, doi.org/10.1016/j.gr.2017.03.005.CrossRefGoogle Scholar
Franzke, H. J., Hauschke, N. and Hellmund, M. (2015). Spätpleistozäne bis frühholozäne Tektonik in einem Karsttrichter im Bereich der Störungszone des Harznordrandes nahe Benzingerode (Sachsen-Anhalt) [Late Pleistocene to Early Holocene tectonics in a karst sinkhole in the area of the northern Harz boundary fault zone near Benzingerode (Saxony-Anhalt)]. Hallesches Jahrbuch für Geowissenschaften, 37, 110.Google Scholar
Gangopadhyay, A. and Talwani, P. (2003). Symptomatic features of intraplate earthquakes. Seismological Research Letters, 74, 863883, doi.org/10.1785/gssrl.74.6.863.Google Scholar
Gast, R. and Gundlach, T. (2006). Permian strike slip and extensional tectonics in Lower Saxony, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 4156, doi.org/10.1127/1860-1804/2006/0157-0041.Google Scholar
Grollimund, B. and Zoback, M. D. (2001). Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone? Geology, 29, 175178, doi.org/10.1130/0091-7613(2001)029<0175:DDTISI>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Grube, A. (2019a). Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquakes evidence during the younger Weichselian and Holocene. International Journal of Earth Sciences, 108, 845861, doi.org/10.1007/s00531-019-01681-2.Google Scholar
Grube, A. (2019b). Palaeoseismic structures in Quaternary sediments, related to an assumed fault zone north of the Permian Peissen-Gnutz salt structure (NW Germany) – neotectonic activity and earthquakes from the Saalian to the Holocene. Geomorphology, 328, 1527, doi.org/10.1016/j.geomorph.2018.12.004.Google Scholar
Grünthal, G., Mayer‐Rosa, D. and Lenhardt, W. A. (1998). Abschätzung der Erdbebengefährdung für die D‐A‐CH‐Staaten‐Deutschland, Österreich, Schweiz [Estimation of the earthquake hazard for the D-A-CH-countries – Germany, Austria, Switzerland]. Bautechnik, 75, 753767, doi.org/10.1002/bate.199805380.Google Scholar
Grünthal, G., Stromeyer, D. and Wahlström, R. (2009). Harmonization check of Mw within the central, northern, and northwestern European earthquake catalogue (CENEC). Journal of Seismology, 13, 613632, doi.org/10.1007/s10950-009-9154-2.Google Scholar
Grützner, C., Fischer, P. and Reicherter, K. (2016). Holocene surface ruptures of the Rurrand Fault, Germany-insights from palaeoseismology, remote sensing and shallow geophysics. Geophysical Journal International, 204, 16621677, doi.org/10.1093/gji/ggv558.CrossRefGoogle Scholar
Hampel, A., Hetzel, R., Maniatis, G. and Karow, T. (2009). Three‐dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting. Journal of Geophysical Research, 114, B08406, doi.org/10.1029/2008JB006113.Google Scholar
Hardt, J., Lüthgens, C., Hebenstreit, R. and Böse, M. (2016). Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice-marginal position in northeast Germany. Quaternary Science Reviews, 154, 8599, doi.org/10.1016/j.quascirev.2016.10.015.Google Scholar
Hardt, J. and Böse, M. (2018). The timing of the Weichselian Pomeranian ice marginal position south of the Baltic Sea: a critical review of morphological and geochronological results. Quaternary International, 478, 5158, doi.org/10.1016/j.quaint.2016.07.044.Google Scholar
Heidbach, O., Rajabi, M., Reiter, K. and Ziegler, M. (2016). World Stress Map 2016. GFZ Data Services, doi.org/10.5880/WSM.2016.002.Google Scholar
Hoffmann, G. and Reicherter, K. (2012). Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101, 351363, doi.org/10.1007/s00531-010-0633-z.Google Scholar
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. and Svendsen, J. I. (2016). The last Eurasian ice sheets-a chronological database and time‐slice reconstruction, DATED‐1. Boreas, 45, 145, doi.org/10.1111/bor.12142.Google Scholar
Huster, H., Hübscher, C. and Seidel, E. (2020). Impact of Late Cretaceous to Neogene plate tectonics and Quaternary ice loads on supra-salt deposits at Eastern Glückstadt Graben, North German Basin. International Journal of Earth Sciences, 109, 10291050, doi.org/10.1007/s00531-020-01850-8.Google Scholar
Hübscher, C., Lykke‐Andersen, H., Hansen, M. B. and Reicherter, K. (2004). Investigating the structural evolution of the western Baltic. Eos, Transactions American Geophysical Union, 85, 115115, doi.org/10.1029/2004EO120006.CrossRefGoogle Scholar
Kaiser, A., Reicherter, K., Hübscher, C. and Gajewski, D. (2005). Variation of the present-day stress field within the North German Basin – insights from thin shell FE modeling based on residual GPS velocities. Tectonophysics, 397, 5572, doi.org/10.1016/j.tecto.2004.10.009.Google Scholar
Kley, J. and Voigt, T. (2008). Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839842, doi.org/10.1130/G24930A.1.CrossRefGoogle Scholar
Knoth, W. (1992). Geologische Übersichtskarte von Sachsen-Anhalt 1:400000 [Geological overview map of Saxony-Anhalt 1:400,000]. Geologisches Landesamt Sachsen-Anhalt, 1st ed., Halle (Saale).Google Scholar
Kossmat, F. (1927). Gliederung des varistischen Gebirgsbaues [Structure of the Variscan mountains]. Abhandlungen des Sächsischen Geologischen Landesamts, 1, 139.Google Scholar
Krawczyk, C. M., McCann, T., Cocks, L. R. M. et al. (2008). Caledonian tectonics. In McCann, T., ed., The Geology of Central Europe. Precambrian and Paleozoic, Vol. 1, Geological Society London, pp. 303381, doi.org/10.1144/CEV1P.7.Google Scholar
Krentz, O., Lapp, M., Seibel, B. and Bahrt, W. (2010). Bruchtektonik [Fracture tectonics]. In Autorenkollektiv, , eds., Die geologische Entwicklung der Lausitz [The Geological Development of the Lausitz]. Vattenfall Europe Mining AG, Cottbus, pp. 137160.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa [English summary: Recent faults in Lapland]. Geologi, 16, 3036 (in Finnish).Google Scholar
Kühner, R. (2009). Neue Ergebnisse zum Nachweis neotektonischer Aktivitäten im Quartär des Tagebaus Welzow-Süd, Südbrandenburg [New results for the detection of neotectonic activities in the Quaternary of the Welzow-Süd opencast mine, southern Brandenburg.]. Brandenburgische Geowissenschaftliche Beiträge, 16, 8793.Google Scholar
Kühner, R. (2010). Quartär [The Quaternary]. In Autorenkollektiv, , eds., Die geologische Entwicklung der Lausitz [The Geological Development of the Lausitz]. Vattenfall Europe Mining AG, Cottbus, pp. 97134.Google Scholar
Lang, J., Hampel, A., Brandes, C. and Winsemann, J. (2014). Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes. Quaternary Science Reviews, 101, 217233, doi.org/10.1016/j.quascirev.2014.07.022.CrossRefGoogle Scholar
Lang, J., Lauer, T. and Winsemann, J. (2018). New age constraints for the Saalian glaciation in northern central Europe: implications for the extent of ice sheets and related proglacial lake systems. Quaternary Science Reviews, 180, 240259, doi.org/10.1016/j.quascirev.2017.11.029.CrossRefGoogle Scholar
Lauer, T. and Weiss, M. (2018). Timing of the Saalian- and Elsterian glacial cycles and the implications for Middle Pleistocene hominin presence in central Europe. Scientific Reports, 8, 5111, doi.org/10.1038/s41598-018-23541-w.Google Scholar
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P. and Kels, H. (2016). Loess-paleosol sequences at the northern European loess belt in Germany: distribution, geomorphology and stratigraphy. Quaternary Science Reviews, 153, 1130, doi.org/10.1016/j.quascirev.2016.10.008.Google Scholar
Lehné, R. J. and Sirocko, F. (2007). Rezente Bodenbewegungspotenziale in Schleswig-Holstein (Deutschland) – Ursachen und ihr Einfluss auf die Entwicklung der rezenten Topographie [Recent land motion potentials in Schleswig-Holstein (Germany) – causes and their influence on the development of the recent topography]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 158, 329347.Google Scholar
Lehné, R. J. and Sirocko, F. (2010). Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig-Holstein) derived by GIS-based analysis of repeated precise leveling data. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 161, 175188.CrossRefGoogle Scholar
Leydecker, G., Steinwachs, M., Seidl, D. et al. (1980). Das Erdbeben vom 2. Juni 1977 in der Norddeutschen Tiefebene bei Soltau [The earthquake of June 2, 1977, in the North German Plain near Soltau]. Geologisches Jahrbuch Reihe E, 18, 318.Google Scholar
Leydecker, G. (2011). Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008 [Earthquake catalog for Germany and peripheral areas for the years 800 to 2008]. Geologisches Jahrbuch Reihe E, 59, 1198.Google Scholar
Littke, R., Scheck-Wenderoth, M., Brix, M. R. and Nelskamp, S. (2008). Subsidence, inversion and evolution of the thermal field. In Littke, R., Bayer, U., Gajewski, D. and Nelskamp, S., eds., Dynamics of Complex Intracontinental Basins – The Central European Basin System. Springer-Verlag, Berlin-Heidelberg, pp. 125141.Google Scholar
Ludwig, A. O. (2011). Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede [Two distinctive push moraines: Peski/Belarus and Jasmund, Rügen Island/Northeast Germany – common features and difference]. E&G–Quaternary Science Journal, 60, 464487, doi.org/10.3285/eg.60.4.06.Google Scholar
Lüthgens, C. and Böse, M. (2011). Chronology of Weichselian main ice marginal positions in north-eastern Germany. E&G – Quaternary Science Journal, 60, 236247, doi.org/10.3285/eg.60.2-3.02.Google Scholar
Marotta, A. M., Bayer, U. and Thybo, H. (2000). The legacy of the NE German Basin-Reactivation by compressional buckling. Terra Nova, 12, 132140, doi.org/10.1046/j.1365-3121.2000.123296.x.Google Scholar
Marotta, A. M., Bayer, U., Thybo, H. and Scheck, M. (2002). Origin of regional stress in the North German basin: results from numerical modeling. Tectonophysics, 360, 245264, doi.org/10.1016/S0040-1951(02)00358-X.Google Scholar
Marotta, A. M., Mitrovica, J. X., Sabadini, R. and Milne, G. (2004). Combined effects of tectonics and glacial isostatic adjustment on intraplate deformation in central and northern Europe: applications to geodetic baseline analyses. Journal of Geophysical Research, 109, B01413, doi.org/10.1029/2002JB002337.Google Scholar
Mazur, S., Scheck-Wenderoth, M. and Krzywiec, P. (2005). Different modes of the Late Cretaceous – Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences, 94, 782798, doi.org/10.1007/s00531-005-0016-z.Google Scholar
McCann, T. (2008). Introduction and overview. In McCann, T., ed., The Geology of Central Europe: Precambrian and Palaeozoic. The Geological Society of London, pp. 120.Google Scholar
McKenna, J., Stein, S. and Stein, C. A. (2007). Is the New Madrid seismic zone hotter and weaker than its surroundings? In S. Stein and S. Mazzotti, eds., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America, Special Paper 425, pp. 167–175, doi.org/10.1130/2007.2425(12).Google Scholar
Meinsen, J., Winsemann, J., Roskosch, J. et.al. (2014). Climate control on the evolution of Late Pleistocene alluvial‐fan and aeolian sand‐sheet systems in NW Germany. Boreas, 43, 4266, doi.org/10.1111/bor.12021.Google Scholar
Meschede, M. (2015). Geologie Deutschlands: Ein prozessorientierter Ansatz [Geology of Germany: A Process-Oriented Approach]. Springer, Berlin/Heidelberg, 249 pp.Google Scholar
Mey, J., Scherler, D., Wickert, A. D. et al. (2016). Glacial isostatic uplift of the European Alps. Nature Communications, 7, 13382, doi.org/10.1038/ncomms13382.Google Scholar
Mörner, N. A. (1978). Faulting, fracturing, and seismicity as functions of glacio-isostasy in Fennoscandia. Geology, 6, 4145, doi.org/10.1130/0091-7613(1978)6<41:FFASAF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Müller, U. and Obst, K. (2008). Junge halokinetische Bewegungen im Bereich der Salzkissen Schlieven und Marnitz in Südwest-Mecklenburg [Young halokinetic movements in the area of the salt pillows Schlieven and Marnitz in south-west Mecklenburg]. Brandenburgische Geowissenschaftliche Beiträge, 15, 147154.Google Scholar
Müller, B., Scheffzük, F., Schilling, M. et al. (2020a). Reservoir-Management and Seismicity – Strategies to Reduce Induces Seismicity. DGMK-Research Report 776.Google Scholar
Müller, K., Polom, U., Winsemann, J. et al. (2020b). Structural style and neotectonic activity along the Harz Boundary Fault, northern Germany: a multimethod approach integrating geophysics, outcrop data and numerical simulations. International Journal of Earth Sciences, 109, 18111835, doi.org/10.1007/s00531-020-01874-0.Google Scholar
Norton, K. P. and Hampel, A. (2010). Postglacial rebound promotes glacial re‐advances – a case study from the European Alps. Terra Nova, 22, 297302, doi.org/10.1111/j.1365-3121.2010.00946.x.Google Scholar
Pharaoh, T. C., Dusar, M., Geluk, M. C. et al. (2010). Tectonic evolution. In Doornenbal, J. C. and Stevenson, A. G., eds., Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten, pp. 2557.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2018). Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745, 338348, doi.org/10.1016/j.tecto.2018.08.004.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2019). The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet. DEUQUA Special Publications, 2, 6167, doi.org/10.5194/deuquasp-2-61-2019.CrossRefGoogle Scholar
Reicherter, K., Kaiser, A. and Stackebrandt, W. (2005). The Post-Glacial landscape evolution of the North German Basin: morphology, neotectonics and crustal deformation. International Journal of Earth Science, 94, 10831093, doi.org/10.1007/s00531-005-0007-0.CrossRefGoogle Scholar
Reinecker, J., Heidbach, O. and Müller, B. (2004). World Stress Map (2004 release). www.world-stress-map.org.Google Scholar
Roskosch, J., Winsemann, J., Polom, U. et al. (2015). Luminescence dating of ice‐marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas, 44, 103126, doi.org/10.1111/bor.12083.Google Scholar
Scheck-Wenderoth, M. and Lamarche, J. (2005). Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics, 397, 143165, doi.org/10.1016/j.tecto.2004.10.007.Google Scholar
Schulz, R., Suchi, E., Öhlschläger, D. et al. (2013). Geothermieatlas zur Darstellung möglicher Nutzungskonkurrenzen zwischen CCS und Tiefer Geothermie [Geothermal atlas for illustration of possible competing usage between CCS and deep geothermal energy]. Leibniz-Institut für Angewandte Geophysik und Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, p. 107.Google Scholar
Seidel, E., Meschede, M. and Obst, K. (2018). The Wiek Fault System east of Rügen Island: origin, tectonic phases and its relationship to the Trans-European Suture Zone. In Kilhams, B., Kukla, P. A., Mazur, S. et al., eds., Mesozoic Resource Potential in the Southern Permian Basin. Geological Society, London, Special Publication, Vol. 469, pp. 59–82, doi.org/10.1144/SP469.10.Google Scholar
Stackebrandt, W. (2004). Zur Neotektonik in Norddeutschland [On neotectonics in Northern Germany]. Zeitschrift für geologische Wissenschaften, 32, 8595.Google Scholar
Stackebrandt, W. (2005). Neotektonische Aktivitätsgebiete in Brandenburg (Norddeutschland) [Areas of neotectonic activity in Brandenburg (Northern Germany)]. Brandenburgische Geowissenschaftliche Beiträge, 12, 165172.Google Scholar
Stackebrandt, W. (2008). Zur Neotektonik der Niederlausitz [On neotectonics of the Niederlausitz]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159, 117122, doi.org/10.1127/1860-1804/2008/0159-0117.Google Scholar
Stackebrandt, W. (2015). Neotektonische Beanspruchung [Neotonic stress]. In Stackebrandt, W. and Franke, D., eds., Geologie von Brandenburg. Schweizerbart, Stuttgart, pp. 480487.Google Scholar
Stewart, I. S., Sauber, J. and Rose, J. (2000). Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19, 13671389, doi.org/10.1016/S0277-3791(00)00094-9.CrossRefGoogle Scholar
Sykes, L. R. (1978). Intraplate seismicity, reactivation of pre-existing zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Reviews of Geophysics and Space Physics, 16, 621688, doi.org/10.1029/RG016i004p00621.Google Scholar
Torsvik, T. H. and Cocks, L. R. M. (2017). The integration of palaeomagnetism, the geological record and mantle tomography in the location of ancient continents. Geological Magazine, 156, 242260, doi.org/10.1017/S001675681700098X.Google Scholar
Uta, P., Brandes, C., Bönnemann, C., Gestermann, N., Kaiser, D., Plenefisch, T. and Winsemann, J. (2018). Re-evaluation of the Rotenburg mainshock 2004. DGMK-Project 806, Final Report, 85 pp.Google Scholar
van Balen, R. T., Bakker, M. A. J., Kasse, C., Wallinga, J. and Woolderink, H. A. G. (2019). A Late Glacial surface rupturing earthquake at the Peel Boundary fault zone, Roer Valley Rift System, the Netherlands. Quaternary Science Reviews, 218, 254266, doi.org/10.1016/j.quascirev.2019.06.033.Google Scholar
Vanneste, K., Camelbeeck, T., Verbeeck, K. and Demoulin, A. (2018). Morphotectonics and past large earthquakes in Eastern Belgium. In Demoulin, A., ed., Landscapes and Landforms of Belgium and Luxembourg, World Geomorphological Landscapes. Springer, Cham, pp. 215236, doi.org/10.1007/978-3-319-58239-9_13.Google Scholar
van Wees, J.-D., Stephenson, R. A., Ziegler, P. A. et al. (2000). On the origin of the Southern Permian basin, central Europe. Marine and Petroleum Geology, 17, 4359, doi.org/10.1016/S0264-8172(99)00052-5.Google Scholar
Winsemann, J., Brandes, C. and Polom, U. (2011). Response of a proglacial delta to rapid high‐amplitude lake‐level change: an integration of outcrop data and high‐resolution shear wave seismics. Basin Research, 23, 2252, doi.org/10.1111/j.1365-2117.2010.00465.x.CrossRefGoogle Scholar
Winsemann, J., Lang, J., Polom, U. et al. (2018). Ice‐marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large‐scale depositional architecture. Boreas, 47, 9731002, doi.org/10.1111/bor.12317.Google Scholar
Winsemann, J., Koopmann, H., Tanner, D.C. et al. (2020). Seismic interpretation and structural restoration of the Heligoland glaciotectonic thrust-fault complex: implications for multiple deformation during (pre-)Elsterian to Warthian ice advances into the southern North Sea Basin. Quaternary Science Reviews, 227, 106068, doi.org/10.1016/j.quascirev.2019.106068.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×