Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T08:53:44.854Z Has data issue: false hasContentIssue false

19 - Non-parametric tests for ratio, interval or ordinal scale data

Published online by Cambridge University Press:  05 June 2012

Steve McKillup
Affiliation:
Central Queensland University
Melinda Darby Dyar
Affiliation:
Mount Holyoke College, Massachusetts
Get access

Summary

Introduction

This chapter describes some non-parametric tests for ratio, interval and ordinal scale univariate data. These tests do not use the predictable distribution of sample means, which is the basis of most parametric tests, to infer whether samples are from the same population. Consequently non-parametric tests are generally not as powerful as their parametric equivalents, but if the data are grossly non-normal and cannot be satisfactorily improved by transformation, it is necessary to use one of these tests.

Non-parametric tests are often called “distribution free tests” but most nevertheless assume that the samples being analyzed are from populations with the same distribution. Therefore, most non-parametric tests should not be used where there are gross differences in distribution (including the variance) among samples. The general rule that the ratio of the largest to smallest sample variance should not exceed 4 : 1 discussed in Chapter 13 also applies to non-parametric tests.

Many non-parametric tests for ratio, interval or ordinal data calculate a statistic from a comparison of two or more samples and work in the following way.

First, the raw data are converted to ranks. For example, the lowest value is assigned the rank of “1”, the next highest “2” etc. This transforms the data to an ordinal scale (see Chapter 3) with the ranks indicating only their relative order. Under the null hypothesis that the samples are from the same population you would expect a similar range of ranks within each, with differences among samples occurring only by chance.

Type
Chapter
Information
Geostatistics Explained
An Introductory Guide for Earth Scientists
, pp. 247 - 269
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×