Book contents
- Frontmatter
- Contents
- Preface
- Preface to first edition
- A note about software
- 1 Introduction
- 2 Modeling overview
- Part I Equilibrium in natural waters
- Part II Reaction processes
- Part III Applied reaction modeling
- 22 Hydrothermal fluids
- 23 Geothermometry
- 24 Evaporation
- 25 Sediment diagenesis
- 26 Kinetics of water–rock interaction
- 27 Weathering
- 28 Oxidation and reduction
- 29 Waste injection wells
- 30 Petroleum reservoirs
- 31 Acid drainage
- 32 Contamination and remediation
- 33 Microbial communities
- Appendix 1 Sources of modeling software
- Appendix 2 Evaluating the HMW activity model
- Appendix 3 Minerals in the LLNL database
- Appendix 4 Nonlinear rate laws
- References
- Index
31 - Acid drainage
Published online by Cambridge University Press: 05 August 2012
- Frontmatter
- Contents
- Preface
- Preface to first edition
- A note about software
- 1 Introduction
- 2 Modeling overview
- Part I Equilibrium in natural waters
- Part II Reaction processes
- Part III Applied reaction modeling
- 22 Hydrothermal fluids
- 23 Geothermometry
- 24 Evaporation
- 25 Sediment diagenesis
- 26 Kinetics of water–rock interaction
- 27 Weathering
- 28 Oxidation and reduction
- 29 Waste injection wells
- 30 Petroleum reservoirs
- 31 Acid drainage
- 32 Contamination and remediation
- 33 Microbial communities
- Appendix 1 Sources of modeling software
- Appendix 2 Evaluating the HMW activity model
- Appendix 3 Minerals in the LLNL database
- Appendix 4 Nonlinear rate laws
- References
- Index
Summary
Acid drainage is a persistent environmental problem in many mineralized areas. The problem is especially pronounced in areas that host or have hosted mining activity (e.g., Lind and Hem, 1993), but it also occurs naturally in unmined areas. The acid drainage results from weathering of sulfide minerals that oxidize to produce hydrogen ions and contribute dissolved metals to solution (e.g., Blowes et al., 2005).
These acidic waters are toxic to plant and animal life, including fish and aquatic insects. Streams affected by acid drainage may be rendered nearly lifeless, their stream beds coated with unsightly yellow and red precipitates of oxy-hydroxide minerals. In some cases, the heavy metals in acid drainage threaten water supplies and irrigation projects.
Where acid drainage is well developed and extensive, the costs of remediation can be high. In the Summitville, Colorado district (USA), for example, efforts to limit the contamination of fertile irrigated farmlands in the nearby San Luis Valley and protect aquatic life in the Alamosa River will cost an estimated $100 million or more (Plumlee, 1994a).
Not all mine drainage, however, is acidic or rich in dissolvedmetals (e.g., Ficklin et al., 1992; Mayo et al., 1992; Plumlee et al., 1992). Drainage from mining districts in the Colorado Mineral Belt ranges in pH from 1.7 to greater than 8 and contains total metal concentrations ranging from as low as about 0.1 mg kg−1 to more than 1000 mg kg−1. The primary controls on drainage pH and metal content seem to be (1) the exposure of sulfide minerals to weathering, (2) the availability of atmospheric oxygen, and (3) the ability of nonsulfideminerals to buffer acidity.
- Type
- Chapter
- Information
- Geochemical and Biogeochemical Reaction Modeling , pp. 449 - 460Publisher: Cambridge University PressPrint publication year: 2007