Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T22:14:29.622Z Has data issue: false hasContentIssue false

5 - The Swift era

Published online by Cambridge University Press:  05 December 2012

Neil Gehrels
Affiliation:
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
David N. Burrows
Affiliation:
Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Introduction

The study of gamma-ray bursts (GRBs) remains highly dependent on the capabilities of the observatories that carry out the measurements. The large detector size of BATSE produced an impressively large sample of GRBs for duration and sky distribution studies. The burst localization and repointing capabilities of BeppoSAX led to breakthroughs in host and progenitor understanding. The next phase in our understanding of GRBs is being provided by the Swift mission. In this chapter we discuss the capabilities and findings of the Swift mission and their relevance to our understanding of GRBs. We also examine what is being learned about star formation, supernovae, and the early Universe from the new results. In each section of the chapter, we close with a discussion of the new questions and issues raised by the Swift findings.

The Swift observatory

Swift (Gehrels et al. 2004) carries three instruments: a wide-field Burst Alert Telescope (BAT; Barthelmy et al. 2005a) that detects GRBs and positions them to arcminute accuracy, a narrow-field X-Ray Telescope (XRT; Burrows et al. 2005a) and a UV–Optical Telescope (UVOT; Roming et al. 2005) that observe their afterglows and determine positions to arcsecond accuracy, all within about 2 minutes. BAT is a coded aperture hard X-ray (15–350 keV) imager with 0.5 m2 of CdZnTe detectors (32 000 individual sensors; ~2400 cm2 effective area at 20 keV including mask occultation) and a 1.4 sr half-coded field of view.

Type
Chapter
Information
Gamma-ray Bursts , pp. 73 - 90
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. et al. (2008). ApJ 681, 1419.
Amati, L. et al. (2000). Science 290, 953.
Antonelli, L. A et al. (2000). ApJ 545, L39.
Barthelmy, S. D et al. (2005a). Sp. Sci. Rev. 120, 143.
Barthelmy, S. D et al. (2005b). Nature 438, 994.
Barthelmy, S. D et al. (2005c). ApJ 635, L133.
Berger, E. et al. (2005). Nature 438, 988.
Berger, E. et al. (2006). ApJ 642, 979.
Berger, E. et al. (2007). ApJ 664, 1000.
Bloom, J. SFrail, D. A. & Kulkarni, S. R. (2003). ApJ 594, 674.
Bloom, J. S et al. (2006). ApJ 638, 354.
Bromm, V. & Loeb, A. (2002). ApJ 575, 111.
Burrows, D. N et al. (2005a). Sp. Sci. Rev. 120, 165.
Burrows, D. N et al. (2005b). Science 309, 1833.
Burrows, D. N & Racusin, J. (2006). Nuovo Cim. B 121, 1273.
Burrows, D. N et al. (2006). ApJ 653, 468.
Burrows, D. N et al. (2007). Phil. Trans. R. Soc. A 365, 1213.
Campana, S. et al. (2006a). A&A 454, 113.
Campana, S. et al. (2006b). Nature 442, 1008.
Chandra, P. et al. (2010). ApJ 712, L31.
Chen, H.-W., Prochaska, J. X., Bloom, J. S., & Thompson, I. B. (2005). ApJ 634, L25.
Ciardi, B. & Loeb, A. (2000). ApJ 540, 687.
Curran, P. A, van der Horst, A. J., & Wijers, R. A. M. J. (2008). MNRAS 386, 859.
Cusumano, G. et al. (2007). A&A 462, 73.
Dai, X. et al. (2007). ApJ 658, 509.
Dalal, N., Holz, D. E., Hughes, S. A., & Jain, B. (2006). Phys. Rev. D 74, 063006.
Della Valle, M. et al. (2006). Nature 444, 1050.
Evans, P. A et al. (2007). A&A 469, 379.
Evans, P. A et al. (2009). MNRAS 397, 1177.
Falcone, A. et al. (2006). ApJ 641, 1010.
Finn, L. S, Mohanty, S. D., & Romano, J. D. (1999). Phys. Rev. D 60, 121101.
Fox, D. B et al. (2005). Nature 437, 845.
Frail, D. A et al. (2001). ApJ 562, L55.
Frontera, F. et al. (2004). ApJ 616, 1078.
Fruchter, A. S et al. (2006). Nature 441, 463.
Fynbo, J. P. U. et al. (2006). Nature 444, 1047.
Gal-Yam, A. et al. (2006). Nature 444, 1053.
Gehrels, N. et al. (2004). ApJ 611, 1005.
Gehrels, N. et al. (2005). Nature 437, 851.
Gehrels, N. et al. (2006). Nature 444, 1044.
Granot, J.Königl, A., & Piran, T. (2006). MNRAS 370, 1946.
Greiner, J. et al. (2009). ApJ 693, 1610.
Haislip, J. et al. (2006). Nature 440, 181.
Heise, J., in 't Zand, J. J. M., Kippen, R. M., & Woods, P. M. (2001). In Gamma-Ray Bursts in the Afterglow Era, eds: E., Costa, F., Frontera, & J., Hjorth. Berlin: Springer, p. 16.
Hjorth, J. et al. (2005). Nature 437, 859.
Hurkett, C. P et al. (2008). ApJ 679, 587.
Isenberg, M., Lamb, D. Q., & Wang, J. C. L. (1998). ApJ 493, 154.
Jakobsson, P. et al. (2006a). In Gamma-Ray Bursts in the Swift Era, eds: S. S., Holt, N., Gehrels, & J. A., Nousek. New York: AIP, p. 552.
Jakobsson, P. et al. (2006b). A&A 447, 897.
Kaneko, Y. et al. (2007). ApJ 654, 385.
Kawai, N. et al. (2006). Nature 440, 184.
Kocevski, D. & Butler, N. (2008). ApJ 680, 531.
Kumar, P. & Panaitescu, A. (2000). ApJ 541, L51.
Kumar, P. et al. (2007). MNRAS 376, L57.
Lamb, D. Q & Reichart, D. E. (2000). ApJ 536, 1.
Lamb, D. Q (2002). In Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, Proc. MPA/ESO, 157.
Lee, W. H, Ramirez-Riuz, E., & López-Cámara, D. (2007). ApJ 699, L93.
Liang, E. et al. (2008). ApJ 675, 528.
Lyons, N. et al. (2010). MNRAS 402, 705.
MacFadyen, A. I, Ramirez-Ruiz, E., & Zhang, W. (2006). In Gamma-Ray Bursts in the Swift Era, eds: S. S., Holt & J. A., Nousek. AIP Conf. Series, 836, 48.
Mangano, V. et al. (2007). A&A 470, 105.
Mazets, E. et al. (2008). ApJ 680, 545.
Mazzali, P. et al. (2006). Nature 442, 1018.
Metzger, B. D, Arcones, A., Quataert., E., & Martínez-Pinedo, G. (2010). MNRAS 402, 2771.
Murakami, T. (1991). Adv. Sp. Res. 11, 119.
Nakar, E., Gal-Yam, A., Piran, T., & Fox, D. B. (2006). ApJ 640, 849.
Norris, J. P & Bonnell, J. T. (2006). ApJ 643, 266.
Nousek, J. A et al. (2006). ApJ 642, 389.
Oates, S. R et al. (2009). MNRAS 395, 490.
O'Brien, P. T. et al. (2006a). ApJ 647, 1213.
O'Brien, P. T. et al. (2006b). New J. Phys. 8, 121.
Palmer, D. M et al. (2005). Nature 434, 1107.
Panaitescu, A. et al. (2006). MNRAS 369, 2059.
Peng, F., Königl, A., & Granot, J. (2005). ApJ 626, 966.
Perna, R., Armitage, P. J., & Zhang, B. (2006). ApJ 636, L29.
Pian, E. et al. (2006). Nature 442, 1011.
Piro, L. et al. (1999). ApJ 514, L73.
Piro, L. et al. (2000). Science 290, 955.
Racusin, J. et al. (2008). Nature 455, 183.
Racusin, J. L et al. (2009). ApJ 698, 43.
Rees, M. J & Mészáros, P. (1998). ApJ 496, L1.
Reeves, J. N et al. (2002). Nature 416, 512.
Roming, P. W. A. et al. (2005). Sp. Sci. Rev. 120, 95.
Roming, P. W. A. et al. (2006). ApJ 652, 1416.
Rosswog, S. (2007). In Triggering relativistic jets, eds: W. H., Lee & E., Ramirez-Ruiz, Rev. Mexicana Astron. Astrof. 27, 57.
Rowlinson, A. et al. (2010). MNRAS 409, 531.
Ruiz-Velasco, A. et al. (2007). ApJ 669, 1.
Rykoff, E. S et al. (2006). ApJ 638, L5.
Salvaterra, R. et al. (2009). Nature 461, 1258.
Sato, M., Harrison, F. A., & Rutledge, R. E. (2005). ApJ 623, 973.
Sato, G. et al. (2007). ApJ 657, 359.
Soderberg, A. M et al. (2006). Nature 442, 1014.
Starling, R. L. C. et al. (2011). MNRAS 411, 2792.
Tanvir, N. et al. (2009). Nature 461, 1254.
Troja, E. et al. (2007). ApJ 665, 599.
Villasenor, J. S et al. (2005). Nature 437, 855.
Watson, D. et al. (2002). A&A 393, 1.
Watson, D., Reeves, J. N., Hjorth, J., Jakobsson, P., & Pedersen, K. (2003). ApJ 595, L29.
Waxman, E., Mészáros, P., & Campana, S. (2007). ApJ 667, 351.
Willingale, R. et al. (2007). ApJ 662, 1093.
Yoshida, A., Murakami, T., Nishimura, J., Kondo, I., & Fenimore, E. E. (1991). PASJ 43, L69.
Yoshida, A. et al. (1999). A&A 138, 433.
Zhang, B. et al. (2006). ApJ 642, 354.
Zhang, B. et al. (2007). ApJ 655, L25.
Zhang, B. et al. (2009). ApJ 703, 1696.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Swift era
    • By Neil Gehrels, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA, David N. Burrows, Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Swift era
    • By Neil Gehrels, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA, David N. Burrows, Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Swift era
    • By Neil Gehrels, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA, David N. Burrows, Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.006
Available formats
×