Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T18:36:39.376Z Has data issue: false hasContentIssue false

13 - Controls on evaporation in lowland tropical rainforest

from Part II - Hydrological processes in undisturbed forests

Published online by Cambridge University Press:  12 January 2010

J. M. Roberts
Affiliation:
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
J. H. C. Gash
Affiliation:
Centre for Ecology and Hydrology, Wallingford, UK
M. Tani
Affiliation:
Kyoto University, Japan
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam, The Netherlands
M. Bonell
Affiliation:
UNESCO, Paris
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

INTRODUCTION

Although there has been substantial deforestation in recent decades, lowland rainforests still constitute an important fraction of land cover in the tropical regions (cf. Drigo, this volume). There are around 1800 million hectares of natural forest cover in the tropics, about 37% of the land area. Of this forest cover around 1000 million hectares are lowland rainforest (FAO, 2001). The bulk of lowland rainforest is in the Equatorial Regions, in the Amazon basin, South East Asia and Central Africa (Richards, 1996).

In the past two decades there has been a sustained interest in the factors that control water fluxes from tropical rainforest. The motivations for that interest are many. It has long been realised that the hydrology of vegetation has important links with the partitioning of available energy at the surface of the Earth and the impact of land cover changes on surface climate. There is also a need to understand the influence of global changes in climate on water resources and the behaviour of large areas of tropical vegetation will be important to this understanding. Detailed knowledge and understanding of aspects of tropical forest hydrology is key to a reliable prediction of the effects of rainforest management on the amount and timing of streamflow.

Catchment studies have considerable value in enabling direct comparisons of the effects of changes in land cover on the amount and the timing of streamflow to be made.

Type
Chapter
Information
Forests, Water and People in the Humid Tropics
Past, Present and Future Hydrological Research for Integrated Land and Water Management
, pp. 287 - 313
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul Rahim, N., Saifiddin, S. and Zulkifi, Y. (1995). Water balance and hydrological characteristics of forested watersheds in Peninsular Malaysia. In: Second International Study Conference on GEWEX in Asia and GAME. Pp. 6–10, Pattaya, Thailand
Aoki, M., Yabuki, K. and Koyama, H. (1978). Micrometeorology of Pasoh forest. Malayan Nature Journal, 30: 149–159Google Scholar
Bernhardt-Reversat, F., Huttel, C. and Lemee, G. (1978). La forêt sempervirente de basse Côte d'Ivoire. In: Problemes d'Ecologie: Structure et Fonctionnement des Ecosystemes Terrestres. (M. Lamotte and F. Bouliere (eds). Masson, Paris. Pps. 32–345
Bonal, D., Atger, C., Barigah, T. S., Ferhi, A., Guehl, J-M. and Ferry, B. (2000). Water acquisition patterns of two wet tropical canopy tree species of French Guiana as inferred from H218O extraction profiles. Annals of Forest Science, 57: 717–724CrossRefGoogle Scholar
Bonell, M (1999). Tropical forest hydrology and the role of the UNESCO International Hydrological Programme. Hydrology and Earth System Sciences, 3: 451–461CrossRefGoogle Scholar
Bonell, M., Barnes, C. J., Grant, C. R., Howard, A. and Burns, J. (1998). High rainfall, response-dominated catchments: A comparative study of experiments in tropical North East Queensland with temperate New Zealand. In: Isotope Tracers in Catchment Hydrology, (eds. C. Kendall and J. J. McDonnell), Elsevier, Amsterdam. Pp. 347–390CrossRef
Bouten, W., Swart, P. J. F. and Water, E. (1991). Microwave transmission, a new tool in forest hydrological research. Journal of Hydrology, 124: 119–130CrossRefGoogle Scholar
Brouwer, L. C. (1996). Nutrient Cycling in Pristine and Logged Tropical Rain Forest. Tropenbos-Guyana Series, 1, Tropenbos-Guyana Programme, Georgetown, Guyana. 224 pp
Bruijnzeel, L. A. (1989). (De)forestation and dry season flow in the humid tropics: a closer look. Journal of Tropical Forest Science, 1: 229–243Google Scholar
Bruijnzeel, L. A. (1990). Hydrology of Moist Tropical Forests and Effects of Conversion: a State of Knowledge Review. IHP–UNESCO Humid Tropical Programme, Paris, 224 pp
Bruijnzeel, L. A. (1996). Predicting the hydrological impacts of land cover transformation in the humid tropics: the need for integrated research. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 15–55
Bruijnzeel, L. A., Waterloo, M. J., Proctor, J., Kuiters, A. T. and Kotterink, B. (1993). Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology, 81: 145–167CrossRefGoogle Scholar
Bruijnzeel, L. A. and Wiersum, K. F. (1987). Rainfall interception by a young Acacia auriculiformis (A. Cunn) plantation forest in west Java, Indonesia: Application of Gash's Analytical Model. Hydrological Processes, 1: 309–319CrossRefGoogle Scholar
Calder, I. R. (1986). A stochastic model of rainfall interception. Journal of Hydrology, 89: 65–71CrossRefGoogle Scholar
Calder, I. R. (1990). Evaporation in the Uplands. John Wiley, Chichester, UK. 148 pp
Calder, I. R. (1999). The Blue Revolution: Land Use and Integrated Water Resources Management. Earthscan Publications Ltd., London. 192 pp
Calder, I. R., Hall, R. L., Rosier, P. T. W., Bastable, H. G. and Prasanna, K. T. (1996). Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species. Journal of Hydrology, 185: 379–388CrossRefGoogle Scholar
Calder, I. R. and Wright, I. R. (1986). Gamma ray attenuation studies of interception from Sitka Spruce: some evidence for an additional transport mechanism. Water Resources Research, 22: 409–417CrossRefGoogle Scholar
Calder, I. R., Wright, I. R. and Murdiyarso, D. (1986) A study of evaporation from tropical rainforest – west Java. Journal of Hydrology, 89: 13–31CrossRefGoogle Scholar
Carswell, F. E., Meir, P., Wandelli, E. V., Bonates, L. C. M., Kruijt, B., Barbosa, E. M., Nobre, A. D., Grace, J. and Jarvis, P. G. (2000). Photosynthetic capacity in a central Amazonian rainforest. Tree Physiology, 20: 179–186CrossRefGoogle Scholar
Chappell, N. A., Bidin, K. and Tych, W. (2001). Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest. Plant Ecology, 153: 215–229CrossRefGoogle Scholar
Collinet, J., Monteny, B and Poyaud, B. (1984). Le milieu physique, in Recherche et Aménagement en Milieu Forestier Tropical Humide: le Projet Taï de Côte d'Ivoire, Notes Techniques du MAB no. 15, pp. 35–58, UNESCO, Paris
Cox, P. M., Betts, P. M., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184–187CrossRefGoogle Scholar
Culf, A. D., Esteves, J. L., Marques, A. and da Rocha, H. R. (1996). Radiation, temperature and humidity over forest and pasture in Amazonia. In: Amazonian Deforestation and Climate, edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 175–191
Culf, A. D., Fisch, G. and Hodnett, M. G. (1995). The albedo of Amazonian forest and ranchland. Journal of Climate, 8: 1544–15542.0.CO;2>CrossRefGoogle Scholar
Dolman, A. J., Gash, J. H. C., Roberts, J. M. and Shuttleworth, W. J. (1991). Stomatal and surface conductance of tropical rainforest. Agricultural and Forest Meteorology, 54: 303–318CrossRefGoogle Scholar
Duquesnay, A., Bréda, N., Stievenard, M. and Dupouey, J.-L. (1998). Changes in tree-ring δ 13C and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant, Cell and Environment, 21: 565–572CrossRefGoogle Scholar
Dykes, A. P. (1997). Rainfall interception from a lowland tropical rainforest in Brunei. Journal of Hydrology, 200: 260–279CrossRefGoogle Scholar
Eeles, C. W. O. (1979). Soil moisture deficits under montane rainforest and tea. East African Agricultural and Forestry Journal, 43: 128–138CrossRefGoogle Scholar
Elsenbeer, H., Cassel, D. K. and Zuñiga, L. (1994). Throughfall in the Terra Firme forest of western Amazonia. Journal of Hydrology (New Zealand), 32: 30–44Google Scholar
FAO (2001). State of the Worlds Forests 2001. Food and Agriculture Organization of the United Nations, Rome, Italy. 181 pp
Franken, W., Leopoldo, P. R., Matsui, E. and Ribeiro, M. de N. G. (1982). Estudo da interceptação da áqua de chuva em cobertura floestal amazônica do tipo terra firme. Acta Amazonica, 12: 327–331CrossRefGoogle Scholar
Gash, J. H. C. (1979). An analytical model of rainfall interception in forests. Quarterly Journal of the Royal Meteorological Society, 105: 43–55CrossRefGoogle Scholar
Gash, J. H. C., Lloyd, C. R. and Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170: 79–86CrossRefGoogle Scholar
Gash, J. H. C., Nobre, C. A., Roberts, J. M. and Victoria, R. L. (Eds.). (1996). Amazonian Deforestation and Climate. John Wiley, Chichester, UK. 611 pp
Gash, J. H. C., Valente, F. and David, J. S. (1999). Estimates and measurements of evaporation from wet, sparse pine forest in Portugal. Agricultural and Forest Meteorology, 94: 149–158CrossRefGoogle Scholar
Gash, J. H. C., Wright, I. R. and Lloyd, C. R. (1980). Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 48: 89–105CrossRefGoogle Scholar
Gilmour, D. A. (1975). Catchment water balance studies on the wet tropical coast of North Queensland. Unpublished Ph. D. Thesis, James Cook University, Townsville, Australia
Golley, F. B., McGinnis, J. T. and Clements, R. G. (1971). La biomassa y la estructura mineral de algunos bosques de Darién, Panama. Turrialba, 21: 189–196Google Scholar
Golley, F. B., McGinnis, J. T., Clements, R. G., Child, G. I. and Duever, M. J. (1975). Mineral cycling in a tropical moist ecosystem. University of Georgia Press, Athens, Georgia
Grace, J. (1999). Environmental controls of gas exchange in tropical rainforests. In: Physiological Plant Ecology, edited by M. C. Press, J. D. Scholes and M. G. Baker, Blackwell Science, Oxford, UK. Pp. 367–389
Grace, J., Lloyd, J., McIntyre, J, Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Massheder, J., Wright, I. and Gash, J. (1995). Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Global Change Biology, 1: 1–12CrossRefGoogle Scholar
Granier, A. 1985. Une nouvelle méthode pour la mesure de flux de sève brute dans le tronc des arbres. Annales de Sciences Forestières, 42: 193–200CrossRefGoogle Scholar
Granier, A. 1987. Evaluation of tranpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3: 309–320CrossRefGoogle Scholar
Granier, A., Huc, R. and Barigah, S. T. (1996). Transpiration of natural rainforest and its dependence on climatic factors. Agricultural and Forest Meteorology, 78: 19–29CrossRefGoogle Scholar
Hall, R. L. (1992). An improved numerical implementation of Calder's stochastic model of rainfall interception – a note. Journal of Hydrology, 140: 389–392CrossRefGoogle Scholar
Hancock, N. H. and Crowther, J. M. (1979). A technique for the direct measurement of water storage on a forest canopy. Journal of Hydrology, 41: 105–122CrossRefGoogle Scholar
Hodnett, M. G., Oyama, M. D., Tomasella, J. and Marques Filho, A. de O. (1996). Comparisons of long-term soil water storage behaviour under pasture and forest in three areas of Amazonia. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 57–77
Hölscher, D., , T. D. de A., Bastos, T. X., Denich, M. and Fölster, H. (1997). Evaporation from young secondary vegetation in eastern Amazonia. Journal of Hydrology, 193: 293–305CrossRefGoogle Scholar
Hubbard, R. M., Bond, B. J. and Ryan, M. G. (1999). Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiology, 19: 165–172CrossRefGoogle ScholarPubMed
Hutjes, R. W. A., Wierda, A. and Veen, A. W. L. (1990). Rainfall interception in the Tai Forest, Ivory Coast: application of two simulation models to a humid tropical system. Journal of Hydrology, 114: 259–275CrossRefGoogle Scholar
Hulme, M. and Viner, D. (1998). A climate change scenario for the tropics. Climatic Change, 39: 145–176CrossRefGoogle Scholar
IPCC. (2001). Climate Change 2001: The Scientific Basis. Edited by J. T Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson. Working Group 1 Report to the Intergovernmental Panel on Climate Change, Third Assessment, Cambridge University Press, Cambridge. 881 pp
Jackson, P., Cavalier, J., Goldstein, G. and Meinzer, F. C. (1995). Partitioning of water resources among plants of a lowland tropical forest. Oecologia, 101: 197–203CrossRefGoogle ScholarPubMed
Jarvis, P. G. (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society, B 273: 593–610CrossRefGoogle Scholar
Jetten, V. G. (1994). Modelling the effects of logging on the water balance of a tropical rainforest. Unpublished Ph. D. thesis, University of Utrecht, Utrecht, The Netherlands
Jetten, V. G. (1996). Interception of tropical rainforest: performance of a canopy water balance model. Hydrological Processes, 10: 671–6853.0.CO;2-A>CrossRefGoogle Scholar
Jipp, P. H., Nepstad, D. C., Cassell, D. K. and Carvalho, C. R. (1998). Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change, 39: 395–412CrossRefGoogle Scholar
Jordan, C. F. (1969). Derivation of leaf area index from light quality on the forest floor. Ecology 50: 663–666CrossRefGoogle Scholar
Jordan, C. F. (1971). Productivity of a tropical forest and its relation to a world pattern of energy storage. Journal of Ecology 59: 127–142CrossRefGoogle Scholar
Jordan, C. F. and Heuveldop, J. (1981). The water budget of an Amazonian rainforest. Acta Amazonica 11: 87–92CrossRefGoogle Scholar
Jordan, C. F. and Uhl, C. (1978). Biomass of a ‘Terra Firme’ forest of the Amazon basin. Oecologia Plantarum 13: 387–400Google Scholar
Kato, R., Tadaki, Y. and Ogawa, H. (1978). Plant biomass and growth increment studies in Pasoh Forest. Malayan Nature Journal, 30: 211–245Google Scholar
Kerfoot, O. (1962). Root systems of forest trees, shade trees and tea bushes. East African Agricultural and Forestry Journal, 27: (Special Issue)CrossRefGoogle Scholar
Kira, T. H., Ogawa, H., Yoda, K. A. and Ogino, K. (1964). Primary production by a tropical rainforest of southern Thailand. Botanical Magazine of Tokyo 77: 428–429CrossRefGoogle Scholar
Kira, T. H., Ogawa, H., Yoda, K. A. and Ogino, K. (1967). Comparative ecological studies on three main types of vegetation in Thailand. IV. Dry matter production with special reference to the Khao Chong rainforest. Nature and Life in SE Asia 5: 149–174Google Scholar
Kira, T. H., Shinozaki, K. and Hozumi, K. (1969). Structure of forest canopies as related to their primary productivity. Plant and Cell Physiology, 10: 129–142Google Scholar
Klinge, H. and Herrera, R. (1983). Phytomass structure of natural plant communities on spodosols in southern Venezuela: the tall Amazon caatinga forest. Vegetatio, 53: 65–84CrossRefGoogle Scholar
Kull, O. and Kruijt, B. (1999). Acclimation of photosynthesis to light – a mechanistic approach. Functional Ecology, 13: 24–36CrossRefGoogle Scholar
Kuraji, K. and Paul, L. L. (1994). Effects of rainfall interception on water balance of two tropical rainforest catchments, Sabah, Malaysia, in Proceedings of the International Symposium on Forest Hydrology, 291–298. Tokyo, Japan
Lawton, R. O., Nair, U. S., Pielke, R. A. Sr. and Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science, 294: 584–587Google ScholarPubMed
Ledger, D. C. (1975). The water balance of an exceptionally wet catchment area in West Africa. Journal of Hydrology, 24:207–214CrossRefGoogle Scholar
Leigh, E. G. (1978). Slope hydrology and denudation in the Pasoh Forest Reserve. 1. Surface wash; Experimental techniques and some preliminary results. Malayan Nature Journal, 30: 179–197Google Scholar
Lloyd, C. R., Gash, J. H. C., Shuttleworth, W. J. and Marques, A.de O. (1988). The measurement and modelling of rainfall interception by Amazonian rainforest. Agricultural and Forest Meteorology, 43: 277–294CrossRefGoogle Scholar
Lloyd, C. R. and Marques, Filho A. de O. (1988). Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology, 42: 63–73CrossRefGoogle Scholar
Loescher, H. W., Powers, J. S. and Oberbauer, S. F. (2002). Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica. Journal of Tropical Ecology, 18: 397–407CrossRefGoogle Scholar
Mahli, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A. D. and Scott, S. (1998). Carbon dioxide transfer over a central Amazonian rainforest. Journal of Geophysical Research-Atmospheres, 103: D24, 31593–31612Google Scholar
Mahli, Y., Pegoraro, E., Nobre, A. D., Pereira, M. G. P., Grace, J., Culf, A. D. and Clement, R. (2002). The energy and water dynamics of a central Amazonian rainforest. Journal of Geophysical Research-Atmospheres, (in press)Google Scholar
Malaisse, F. (1981). In: Dynamic Properties of Forest Ecosystems (D. E. Reichle, ed.). Cambridge University Press, Cambridge
Malmer, A. (1993). Dynamics of Hydrology and nutrient losses as response to establishment of forest plantation: A case study on tropical forest land in Sabah, Malaysia. Unpublished Ph. D. Thesis, Swedish University of Agricultural Sciences, Umeå, Sweden
McWilliam, A-L. C., Roberts, J. M., Cabral, O. M. R., Leitao, M. V. B. R., da Costa, A. C. L., Maitelli, G. T. and Zamparoni, C. A. G. P. (1993). Leaf area index and above-ground biomass of terra firme rainforest. Functional Ecology, 7: 310–317CrossRefGoogle Scholar
McWilliam, A-L. C., Cabral, O. M. R., Gomes, B. L., Esteves, J. L. and Roberts, J. M. (1996). Forest and pasture leaf-gas exchange in south-west Amazonia. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 265–286
Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M., Cavalier, J. and Wright, S. J. (1999a). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia, 121: 293–301CrossRefGoogle Scholar
Meinzer, F. C., Goldstein, G., Franco, A. C., Bustamante, M., Igler, E., Jackson, P., Caldas, L. and Rundel, P. W. (1999b). Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Functional Ecology, 13: 273–282CrossRefGoogle Scholar
Meinzer, F. C., Goldstein, G., Holbrook, N. M., Jackson, P. and Cavalier, J. (1993). Stomatal and environmental control of transpiration in a lowland tropical forest tree. Plant, Cell and Environment, 16: 429–436CrossRefGoogle Scholar
Meir, P. W. (1996). The exchange of carbon dioxide in a tropical forest. Unpublished Ph. D. thesis, University of Edinburgh. 208 pp
Mizutani, K., Yamanoi, K., Ikeda, T. and Watanabe, T. (1997). Applicability of the eddy correlation method to measure sensible heat transfer to forest under rainfall conditions. Agricultural and Forest Meteorology, 86: 193–203CrossRefGoogle Scholar
Molion, L. C. B and Moore, C. J. (1983). Estimating the zero-plane displacement for tall vegetation using a mass conservation method. Boundary-Layer Meteorology, 26: 115–125CrossRefGoogle Scholar
Monteith, J. L. (1965). Evaporation and environment. Symposium of the Society for Experimental Biology, 19: 205–234Google Scholar
Monteith, J. L. (1995). A reinterpretation of stomatal responses to humidity. Plant, Cell and Environment, 18: 357–364CrossRefGoogle Scholar
Müller, D. and Nielsen, J. (1965). Production brute, perte par respiration et production nette dand la foret ombrophile tropicale. Forst. Fors Vaes. Danm., 29: 60–160Google Scholar
Nepstad, D. C., Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H. D., da Silva, E., Stone, T. A., Trumbore, S. E. and Veira, S. (1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372: 666–669CrossRefGoogle Scholar
Odum, H. T. (1970). Summary: an emerging view of the ecological system at El Verde. A tropical rainforest (eds. H. T. Odum and R. F. Pogeon). Division of Technical Information, US Atomic Energy Commission, Washington DC
Ogawa, H., Yoda, K. A., Ogino, K. and Kira, T. H. (1965). Comparative ecological studies on three main types of vegetation in Thailand. II. Plant biomass. Nature and Life in SE Asia 4: 49–80Google Scholar
Oguntoyinbo, J. S. (1970). Reflection coefficient of natural vegetation, crops and urban surfaces in Nigeria. Quarterly Journal of the Royal Meteorological Society, 95: 430–441CrossRefGoogle Scholar
Ohtani, Y., Okano, M., Tani, M., Yamanoi, K., Watanabe, T., Yasuda, Y. and Nik, A. R. (1997). Energy and CO2 fluxes above a tropical rainforest in Peninsular Malaysia – Under-estimation of eddy correlation fluxes during low wind speed conditions. Journal of Agricultural Meteorology, 52: 453–456CrossRefGoogle Scholar
Pearce, A. J. and Rowe, L. K. (1979). Forest management effects on interception, evaporation and water yield. Journal of Hydrology (New Zealand), 18: 73–87Google Scholar
Pinker, R. T., Thompson, O. E. and Eck, T. F. (1980a). The energy balance of a tropical evergreen forest. Journal of Applied Meteorology, 19: 1341–13502.0.CO;2>CrossRefGoogle Scholar
Pinker, R. T., Thompson, O. E. and Eck, T. F. (1980b). The albedo of a tropical evergreen forest. Quarterly Journal of the Royal Meteorological Society, 106: 551–558CrossRefGoogle Scholar
Richards, P. W. (1996). The Tropical Rain Forest. 2nd Edition. Cambridge University Press, Cambridge, UK. 575 pp
Richardson, J. H. (1982). Some implications of tropical forest replacement in Jamaica. Z. Geomorph. N.F., 44: 107–118Google Scholar
Roberts, J. M. (1983). Forest transpiration: a conservative hydrological process?Journal of Hydrology, 66: 133–141CrossRefGoogle Scholar
Roberts, J. M., Cabral, O. M. R. and Aguiar, L. F. (1990). Stomatal and boundary-layer conductances in an Amazonian terra firme rainforest. Journal of Applied Ecology, 27: 336–353CrossRefGoogle Scholar
Roberts, J. M., Cabral, O. M. R., Fisch, G., Molion, L. C. B., Moore, C. J., and Shuttleworth, W. J. (1993). Transpiration from an Amazonian rainforest calculated from stomatal conductance measurements. Agricultural and Forest Meteorology, 65: 175–196CrossRefGoogle Scholar
Roberts, J. M., Cabral, O. M. R., da Costa, J. P., McWilliam, A-L. C. and Sá, T. D. de A. (1996). An overview of the leaf area index and physiological measurements during ABRACOS. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 287–306
Roberts, J. M., Hopkins, R. and Morecroft, M. D. (1999). Towards a predictive description of forest canopies from litter properties. Functional Ecology, 13: 265–272CrossRefGoogle Scholar
Roberts, J. M., Rosier, P. T. W. and Smith, D. M. (2001). The effects of afforestation on chalk groundwater resources. Final Report to UK Department of Environment Transport and the Regions. 81 pp
Roche, M. A. (1982). Evapotranspiration réelle de la foret amazonienne en Guyana. Cahiers Orstom, Série Hydrologie, 19: 37–44Google Scholar
Rowe, L. K. (1979). Rainfall interception by a beech-podocarp-hardwood forestnear Reefton, North Westland, New Zealand. Journal of Hydrology (New Zealand), 18: 63–72Google Scholar
Rutter, A. J. (1967). An analysis of evaporation from a stand of Scots Pine. In: Sopper, W. E. and Lull, H. W. (Eds.), International Symposium on Forest Hydrology, Pergamon Press, Oxford
Rutter, A. J., Kershaw, K. A., Robins, P. C. and Morton, A. J. (1971). A predictive model of rainfall interception in forests, I. Derivation of the model from observations in a stand of Corsican pine. Agricultural Meteorology, 9: 367–384CrossRefGoogle Scholar
Ryan, M. G., Binkley, D. and Fownes, J. H. (1997). Age-related decline in forest productivity: Pattern and Process. Advances in Ecological Research, 27: 213–262CrossRefGoogle Scholar
Sá, T. D. de A., da Costa, J. de P. R. and Roberts, J. M. (1996). Forest and pasture conductances in southern Pará, Amazonia. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 287–306
Saldarriaga, J. G. (1985). Forest succession in the upper Rio Negro of Colombia and Venezuela. Unpublished Ph. D. thesis, University of Tennessee, Knoxville, USA
Schellekens, J., Scatena, F. N., Bruijnzeel, L. A. and Wickel, A. J. (1999). Modelling rainfall interception by a lowland tropical rainforest in north eastern Puerto Rico. Journal of Hydrology, 225: 168–184CrossRefGoogle Scholar
Schellekens, J., Bruijnzeel, L. A., Scatena, F. N., Holwerda, F. and Bink, N. J. (2000). Evaporation from a tropical rainforest, Luquillo Experimental Forest, Puerto Rico. Water Resources Research, 36: 2183–2196CrossRefGoogle Scholar
Schulz, J. P. (1960). Ecological Studies on the rainforest of northern Suriname. In: The vegetation of Suriname, 2, Ed by I. A. Hulster and J. Lanjouw, Van Eedenfonds, Amsterdam for Bot. Mus. and Herb., Rijksuniversitet, Utrecht
Sellers, P. J., Shuttleworth, W. J., Dorman, J. L., Dalcher, A. and Roberts, J. (1989). Calibrating the simple biosphere model for Amazonian tropical forest using field and remote sensing data. Part I. Average calibration with field data. Journal of Applied Meteorology, 28:728–7592.0.CO;2>CrossRefGoogle Scholar
Shuttleworth, W. J. (1988). Evaporation from Amazonian forest. Proceedings of the Royal Society of London, B 233: 321–346CrossRefGoogle Scholar
Shuttleworth, W. J. (1989). Micrometeorology of temperate and tropical forest. Philosophical Transactions of the Royal Society, London, B 324: 299–334CrossRefGoogle Scholar
Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J. M., Marques, A., Fisch, G., Silva, V., Ribeiro, M. N. G., Molion, L. C. B., , L de A., Nobre, C. A., Cabral, O. M. R., Patel, S. and Moraes, J. C. (1984a). Eddy correlation measurements of energy partition for Amazonian forest. Quarterly Journal of Royal Meteorological Society, 110: 1143–1162CrossRefGoogle Scholar
Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J. M., Marques, A., Fisch, G., Silva, V., Ribeiro, M. N. G., Molion, L. C. B., , L de A., Nobre, C. A., Cabral, O. M. R., Patel, S. and Moraes, J. C. (1984b). Observations of radiation exchange above and below Amazonian forest. Quarterly Journal of Royal Meteorological Society, 110: 1163–1169CrossRefGoogle Scholar
Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J. M., Marques, A., Fisch, G., Silva, V., Ribeiro, M. N. G., Molion, L. C. B., , L de A., Nobre, C. A., Cabral, O. M. R., Patel, S. and Moraes, J. C. (1985). Daily variations of temperature and humidity within and above Amazonian forest. Weather, 40: 102–108CrossRefGoogle Scholar
Stewart, J. B. (1977). Evaporation from the wet canopy of a pine forest. Water Resources Research, 13: 915–921CrossRefGoogle Scholar
Szarzynski, J. and Anhuf, D. (2001). Micrometeorological conditions and canopy energy exchanges of a neotropical rainforest (Surumoni-Crane Project, Venezuela). Plant Ecology, 153: 231–239CrossRefGoogle Scholar
Tani, M., Abdul Rahim, N., Ohtani, Y., Yasuda, Y., Mohd Mohd, S., Baharudin, K., Takanashi, S., Noguchi, S., Zulkifli, Y. and Watanabe, T. (2003). Characteristics of energy flux and surface conductance estimated from the meteorological monitoring above a tropical rainforest in Peninsular Malaysia. In: Pasoh: Ecology of a Lowland Tropical Rain Forest in South East Asia. (Ed. by T. Okuda, K. Niiyama and S. C. Thomas). Springer, Tokyo
Thom, A. S. (1975). Momentum, mass and heat exchange. In: Vegetation and the Atmosphere, Vol 1, ed. J. L. Monteith, Academic Press, London, 57–109
Thompson, O. E. and Pinker, R. T. (1975). Wind and temperature profile characteristics in a tropical evergreen forest in Thailand. Tellus, 27: 562–573CrossRefGoogle Scholar
Tobón-Marin, C., Bouten, W. and Sevink, J. (2000). Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. Journal of Hydrology, 237: 40–57CrossRefGoogle Scholar
Ubarana, V. N. (1996). Observation and modelling of rainfall interception loss in two experimental sites in Amazonian forest. In: Amazonian Deforestation and Climate, eds. J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, J Wiley, Chichester, 151–162
Valente, F., David, J. S. and Gash, J. H. C. (1997). Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190: 141–162CrossRefGoogle Scholar
Van Dam, O. (2001). Forest filled with gaps: Effects of gap size on water and nutrient cycling in tropical rainforest. A study in Guyana. Tropenbos-Guyana Series, 10, Tropenbos-Guyana Programme, Georgetown, Guyana. 208 pp
Van der Molen, M. K. (2002). Meteorological impacts of land use changes in the maritime tropics. Ph. D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands. 262 pp
Dijk, A. I. J. M. and Bruijnzeel, L. A. (2001a). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. Journal of Hydrology, 247: 230–238CrossRefGoogle Scholar
Dijk, A. I. J. M. and Bruijnzeel, L. A. (2001b). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. Journal of Hydrology, 247: 239–262CrossRefGoogle Scholar
Walsh, R. P. D. and Newbery, D. M. (1999). The ecoclimatology of Danum, Sabah, in the context of the world's rainforest regions, with particular reference to dry periods and their impact. Philosophical Transactions of the Royal Society, London, Series B, 354: 1869–1883CrossRefGoogle ScholarPubMed
Waterloo, M. J., Bruijnzeel, L. A., Vugts, H. F. and Rawaqa, T. T. (1999). Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions. Water Resources Research, 35: 2133–2144CrossRefGoogle Scholar
Watson, F. G. R., Vertessy, R. A. and Grayson, R. B. (1999). Large-scale modelling of forest hydrological processes and their long-term effect on water yield. Hydrological Processes, 13: 689–7003.0.CO;2-D>CrossRefGoogle Scholar
White, A., Cannell, M. G. R. and Friend, A. D. (2000). CO2 stabilization, climate change and the terrestrial carbon sink. Global Change Biology, 6: 817–833CrossRefGoogle Scholar
Whitmore, T. C. (1998). An Introduction to Tropical rainforests, 2nd Edition. Oxford University Press, Oxford. 282 pp
Wilkinson, S. and Davies, W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell and Environment, 25: 195–210CrossRefGoogle ScholarPubMed
Williams, W. A., Loomis, R. S., and Alvim, P. de T. (1972). Environments of evergreen rainforest on the lower Rio Negro, Brazil. Tropical Ecology, 13: 65–78Google Scholar
Wright, I. R., Gash, J. H. C., da Rocha, H. R. and Roberts, J. M. (1996a). Modelling surface conductance for Amazonian pasture and forest. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 437–458
Wright, I. R., Nobre, C. A., Tomasella, J., da Rocha, H. R., Roberts, J. M., Vertamatti, E., Culf, A. D., Alvala, R. C. S., Hodnett, M. G. and Ubarana, V. N. (1996b). Toward a GCM surface parameterization of Amazonia. In: Amazonian Deforestation and Climate, Edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, John Wiley, Chichester, UK. Pp. 473–504
Yoder, B. J., Ryan, M. G., Waring, R. H., Schoettle, A. W. and Kaufmann, M. R. (1994). Evidence of reduced photosynthetic rates in old trees. Forest Science, 40: 513–527Google Scholar
Zhang, L., Dawes, W. R. and Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37: 701–708CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×