Published online by Cambridge University Press: 05 March 2013
In this chapter, we will explain how to solve a Sudoku puzzle using ideas from algebraic geometry and computer algebra. In fact, we will represent the solutions of a Sudoku as the points in the vanishing locus of a polynomial ideal I in 81 variables, and we will show that the unique solution of a well-posed Sudoku can be read off from the reduced Gröbner basis of I. We should point out, however, that attacking a Sudoku can be regarded as a graph coloring problem, with one color for each of the numbers 1, . . . ,9, and that graph theory provides much more efficient methods for solving Sudoko than do Gröbner bases.
A completed Sudoku is a particular example of what is called a Latin square. A Latin square of order n is an n Ⅹ n square grid whose entries are taken from a set of n different symbols, with each symbol appearing exactly once in each row and each column. For a Sudoku, usually n = 9, and the symbols are the numbers from 1 to 9. In addition to being a Latin square, a completed Sudoku is subject to the condition that each number from 1 to 9 appears exactly once in each of the nine distinguished 3 Ⅹ 3 blocks.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.