Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T08:32:52.102Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 March 2013

Wolfram Decker
Affiliation:
Technische Universität Kaiserslautern, Germany
Gerhard Pfister
Affiliation:
Technische Universität Kaiserslautern, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appel, K.; Haken, W.: The solution of the four-color map problem. Sci. Amer. 237, 108–121 (1977).Google Scholar
Aubry, Y.; Perret, M.: A Weil theorem for singular curves. In Arithmetic, Geometry and Coding Theory. Pellikaan, R., Perret, M. and Vladut, S. G. (eds), 1–7. Gruyter, De (1996).
Bandman, T.; Greuel, G.-M.; Grunewald, F.; Kunyavskii, B.; Pfister, G.; Plotkin, E.: Identities for finite solvable groups and equations in finite simple groups. Compositio Math. 142, 734–764 (2006).Google Scholar
Bierstone, E.; Milman, P.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128, 207–302 (1997).Google Scholar
Birch, B.; Swinnerton-Dyer, H.: Notes on elliptic curves II. Journ. Reine u. Angewandte Math. 218, 79–108 (1965).Google Scholar
Bravo, A.; Encinas, S.; Villamayor, O.: A simplified proof of desingularisation and applications. Rev. Math. Iberoamericana 21, 349–458 (2005).Google Scholar
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD Thesis, University of Innsbruck, Austria (1965).
Cox, D.; Little, J.; O’Shea, D.: Ideals, Varieties and Algorithms, 3rd ed. Springer (2007).
Cox, D.; Little, J.; O’Shea, D.: Using Algebraic Geometry, 2nd ed. Springer (2005).
Decker, W.; Lossen, Chr.: Computing in Algebraic Geometry: A quick start using Singular. Springer (2006).
Decker, W.; Greuel, G.-M.; Pfister, P.: Primary decomposition: algorithms and comparisons. In Algorithmic Algebra and Number Theory, Gert-Martin, Greuel, Matzat, B. H., Hiss, G. (eds), 187–220. Springer (1998).
Decker, W.; Greuel, G.-M.; de Jong, T.; Pfister, G.: The normalization: a new algorithm, implementation and comparisons. In Computational Methods for Representations of Groups and Algebras, Dräxler, P., Michler, G., Ringel, C. M. (eds), 177–185. Birkhäauser (1999).
Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 3-1-5. A computer algebra system for polynomial computations. for Computer Algebra, University of Kaiserslautern, (2012).
Decker, W.; Schreyer, F. O.: Varieties, Gröbner Bases, and Algebraic Curves. To appear.
Dickenstein, A.; Emiris, I. Z. (editors): Solving Polynomial Equations: Foundations, Algorithms, and Applications. Algorithms and Computations in Mathematics 41, Springer (2005).
Doerk, K.; Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Berlin (1992)
Eisenbud, D.; Grayson, D.; Stillman, M., Sturmfels, B.: Computations in Algebraic Geometry with Macaulay2. Springer (2001).
Faugère, J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16, 329–344 (1993).Google Scholar
Feit, Walter; Thompson, John G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13, 775–1029 (1963).Google Scholar
Frühbis-Krüger, A.; Pfister, G.: Algorithmic resolution of singularities. In Singularities and Computer Algebra, Lossen, C., Pfister, G. (eds). LMS Lecture Notes 324, 157–184. Cambridge University Press (2006).
Gianni, P.; Trager, B.; Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. Journal of Symbolic Computation 6, 149–167 (1988).Google Scholar
Gordan, P.: Neuer Beweis des Hilbertschen Satzesüber homogene Funktionen. Nachrichten König. Ges. der Wiss. zu Gött., 240–242 (1899).Google Scholar
Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171–198, (1972).Google Scholar
Greuel, G.-M.; Pfister, G.: Gröbner Bases and Algebraic Geometry. In Gröbner Bases and ApplicationsBuchberger, B. and Winkler, F. (eds). LMS Lecture Notes 251, 109–143. Cambridge University Press (1998).
Greuel, G.-M.; Pfister, G.: Computer algebra and finite groups. In Proc. of the ICM Beijing, 4–14 (2002).Google Scholar
Greuel, G.-M.; Pfister, G.: Singular and Applications. JJahresbericht der DMV 108 (4), 167–196 (2006).Google Scholar
Greuel, G.-M.; Pfister, G.: A Singular Introduction to Commutative Algebra. Second Edition. Springer (2007).
Gröbner, W.: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten. Monatsh. der Mathematik 47, 247–284, (1939).Google Scholar
Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 36, 473–534 (1890).Google Scholar
Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79, 109–326 (1964).Google Scholar
Kemper, G.: Morphisms and constructible sets: Making two theorems of Chevalley constructive. Preprint (2007).
Kreuzer, M.; Robbiano, L.: Computational Commutative Algebra 1. Springer (2000).
Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987).Google Scholar
Labs, O.: A septic with 99 real nodes. Rend. Sem. Mat. Univ. Pad. 116, 299–313 (2006).Google Scholar
Lenstra, Jr., H. W.: Factoring integers with elliptic curves. Ann. Math. 2 (126), 649–673 (1987).Google Scholar
Macaulay, F. S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26, 531–555, (1939).Google Scholar
Miller, V.: Use of elliptic curves in cryptography. In Advances in cryptology–-CRYPTO 85, Williams, Hugh C. (ed), Lecture Notes in Computer Science, 218, 417–426, Springer (1985).
Silvermann, Joseph H.: The Arithmetic of Elliptic Curves. Springer (2009).
Thompson, J.: Non-solvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc. 74, 383–437 (1968).Google Scholar
Vasconcelos, W. V.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer (1998).
Wild, Marcel: The groups of order sixteen made easy. American Mathematical Monthly 112, (1) 20–31 (2005).Google Scholar
Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math 141, 443–551 (1995).Google Scholar
Zorn, M.: Nilpotency of finite groups. Bull. Amer. Math. Soc. 42, 485–486 (1936).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Wolfram Decker, Technische Universität Kaiserslautern, Germany, Gerhard Pfister, Technische Universität Kaiserslautern, Germany
  • Book: A First Course in Computational Algebraic Geometry
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139565769.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Wolfram Decker, Technische Universität Kaiserslautern, Germany, Gerhard Pfister, Technische Universität Kaiserslautern, Germany
  • Book: A First Course in Computational Algebraic Geometry
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139565769.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Wolfram Decker, Technische Universität Kaiserslautern, Germany, Gerhard Pfister, Technische Universität Kaiserslautern, Germany
  • Book: A First Course in Computational Algebraic Geometry
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139565769.007
Available formats
×