Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T15:27:03.998Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 June 2024

David C. Henshall
Affiliation:
RCSI University of Medicine & Health Sciences, Dublin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Fine-Tuning Life
A Guide to MicroRNAs, Your Genome's Master Regulators
, pp. 245 - 263
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, R. C., Feinbaum, R. L., Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.CrossRefGoogle Scholar
Ambros, V. The evolution of our thinking about microRNAs. Nat Med. 2008;14:1036–40.CrossRefGoogle ScholarPubMed
Wightman, B., Ha, I., Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.CrossRefGoogle ScholarPubMed
Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.CrossRefGoogle ScholarPubMed
Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–9.CrossRefGoogle ScholarPubMed
Ruvkun, G. Molecular biology: glimpses of a tiny RNA world. Science. 2001;294:797–9.CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.CrossRefGoogle ScholarPubMed
Hamilton, A. J., Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286:950–2.CrossRefGoogle ScholarPubMed
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefGoogle ScholarPubMed
Brennan, G. P., Henshall, D. C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol. 2020;16:506–19.CrossRefGoogle ScholarPubMed
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.CrossRefGoogle ScholarPubMed
Editorial. Henrietta Lacks: science must right a historical wrong. Nature. 2020;585:7.CrossRefGoogle Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G., Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294:858–62.CrossRefGoogle ScholarPubMed
Lee, R. C., Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–4.CrossRefGoogle ScholarPubMed
Mathews, D. H., Sabina, J., Zuker, M., Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999;288:911–40.CrossRefGoogle ScholarPubMed
Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106:2334.CrossRefGoogle ScholarPubMed
Ambros, V. MicroRNAs: tiny regulators with great potential. Cell. 2001;107:823–6.CrossRefGoogle ScholarPubMed
Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16:720–8.CrossRefGoogle ScholarPubMed
Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.CrossRefGoogle ScholarPubMed
Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefGoogle ScholarPubMed
Zeng, Y., Wagner, E. J., Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002;9:1327–33.CrossRefGoogle ScholarPubMed
Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., Bartel, D. P. MicroRNAs in plants. Genes Dev. 2002;16:1616–26.CrossRefGoogle ScholarPubMed
Hutvagner, G., Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–60.CrossRefGoogle Scholar
Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., Tuschl, T. New microRNAs from mouse and human. RNA. 2003;9:175–9.CrossRefGoogle ScholarPubMed
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.CrossRefGoogle ScholarPubMed
Yi, R., Qin, Y., Macara, I. G., Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6.CrossRefGoogle ScholarPubMed
Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., Bartel, D. P. Vertebrate microRNA genes. Science. 2003;299:1540.CrossRefGoogle ScholarPubMed
Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell. 2003;4:205–17.CrossRefGoogle Scholar
Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CrossRefGoogle ScholarPubMed
Houbaviy, H. B., Murray, M. F., Sharp, P. A. Embryonic stem cell-specific microRNAs. Dev Cell. 2003;5:351–8.CrossRefGoogle ScholarPubMed
Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:1274–81.CrossRefGoogle ScholarPubMed
Johnson, S. M., Lin, S. Y., Slack, F. J. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol. 2003;259:364–79.CrossRefGoogle Scholar
Khvorova, A., Reynolds, A., Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.CrossRefGoogle ScholarPubMed
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., Burge, C. B. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.CrossRefGoogle ScholarPubMed
Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–73.CrossRefGoogle ScholarPubMed
Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., Bartel, D. P. The impact of microRNAs on protein output. Nature. 2008;455:6471.CrossRefGoogle ScholarPubMed
Friedman, R. C., Farh, K. K., Burge, C. B., Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92105.CrossRefGoogle ScholarPubMed
Gebert, L. F. R., MacRae, I. J. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20:2137.CrossRefGoogle ScholarPubMed
Raj, A., van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.CrossRefGoogle ScholarPubMed
Ebert, M. S., Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.CrossRefGoogle ScholarPubMed
Li, Y., Wang, F., Lee, J. A., Gao, F. B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 2006;20:2793–805.CrossRefGoogle ScholarPubMed
Hornstein, E., Shomron, N. Canalization of development by microRNAs. Nat Genet. 2006;38 Suppl:S20–4.CrossRefGoogle ScholarPubMed
Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12:846–60.CrossRefGoogle ScholarPubMed
Alles, J., Fehlmann, T., Fischer, U., Backes, C., Galata, V., Minet, M., et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–64.CrossRefGoogle ScholarPubMed
Londin, E., Loher, P., Telonis, A. G., Quann, K., Clark, P., Jing, Y., et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A. 2015;112:E1106–15.CrossRefGoogle ScholarPubMed
Drouin, G., Godin, J. R., Page, B. The genetics of vitamin C loss in vertebrates. Curr Genomics. 2011;12:371–8.CrossRefGoogle ScholarPubMed
Moroz, L. L., Kocot, K. M., Citarella, M. R., Dosung, S., Norekian, T. P., Povolotskaya, I. S., et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510:109–14.CrossRefGoogle ScholarPubMed
Calcino, A. D., Fernandez-Valverde, S. L., Taft, R. J., Degnan, B. M. Diverse RNA interference strategies in early-branching metazoans. BMC Evol Biol. 2018;18:160–72.CrossRefGoogle ScholarPubMed
Gouzouasis, V., Tastsoglou, S., Giannakakis, A., Hatzigeorgiou, A. G. Virus-derived small RNAs and microRNAs in health and disease. Annu Rev Biomed Data Sci. 2023;6:275–98.CrossRefGoogle ScholarPubMed
Brawand, D., Wagner, C. E., Li, Y. I., Malinsky, M., Keller, I., Fan, S., et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–81.CrossRefGoogle ScholarPubMed
Mehta, T. K., Penso-Dolfin, L., Nash, W., Roy, S., Di-Palma, F., Haerty, W. Evolution of miRNA-binding sites and regulatory networks in cichlids. Mol Biol Evol. 2022;39:msac146.CrossRefGoogle ScholarPubMed
Sunkar, R., Li, Y. F., Jagadeeswaran, G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196203.CrossRefGoogle ScholarPubMed
He, M., Kong, X., Jiang, Y., Qu, H., Zhu, H. MicroRNAs: emerging regulators in horticultural crops. Trends Plant Sci. 2022;27:936–51.CrossRefGoogle ScholarPubMed
Axtell, M. J., Bowman, J. L. Evolution of plant microRNAs and their targets. Trends Plant Sci. 2008;13:343–9.CrossRefGoogle ScholarPubMed
Cuperus, J. T., Fahlgren, N., Carrington, J. C. Evolution and functional diversification of MIRNA genes. Plant Cell. 2011;23:431–42.CrossRefGoogle ScholarPubMed
Taylor, R. S., Tarver, J. E., Hiscock, S. J., Donoghue, P. C. Evolutionary history of plant microRNAs. Trends Plant Sci. 2014;19:175–82.CrossRefGoogle ScholarPubMed
Betti, F., Ladera-Carmona, M. J., Weits, D. A., Ferri, G., Iacopino, S., Novi, G., et al. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat Plants. 2021;7:1379–88.CrossRefGoogle ScholarPubMed
Chen, X., Rechavi, O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol. 2022;23:185203.CrossRefGoogle ScholarPubMed
Kosik, K. S., Nowakowski, T. Evolution of new miRNAs and cerebro-cortical development. Annu Rev Neurosci. 2018;41:119–37.CrossRefGoogle ScholarPubMed
Hu, H. Y., He, L., Fominykh, K., Yan, Z., Guo, S., Zhang, X., et al. Evolution of the human-specific microRNA miR-941. Nat Commun. 2012;3:1145.CrossRefGoogle ScholarPubMed
Nowakowski, T. J., Rani, N., Golkaram, M., Zhou, H. R., Alvarado, B., Huch, K., et al. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat Neurosci. 2018;21:1784–92.CrossRefGoogle ScholarPubMed
McCreight, J. C., Schneider, S. E., Wilburn, D. B., Swanson, W. J. Evolution of microRNA in primates. PLoS One. 2017;12:e0176596.CrossRefGoogle ScholarPubMed
Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., Benning, C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998;17:170–80.CrossRefGoogle ScholarPubMed
Tomari, Y., Zamore, P. D. MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol. 2005;15:R61–4.CrossRefGoogle ScholarPubMed
Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.CrossRefGoogle ScholarPubMed
O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.Google ScholarPubMed
He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.CrossRefGoogle ScholarPubMed
Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43.CrossRefGoogle ScholarPubMed
Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.CrossRefGoogle ScholarPubMed
Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129:1401–14.CrossRefGoogle ScholarPubMed
Fiore, R., Khudayberdiev, S., Christensen, M., Siegel, G., Flavell, S. W., Kim, T. K., et al. Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 2009;28:697710.CrossRefGoogle ScholarPubMed
Miller-Delaney, S. F., Bryan, K., Das, S., McKiernan, R. C., Bray, I. M., Reynolds, J. P., et al. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2015;138:616–31.CrossRefGoogle ScholarPubMed
Borchert, G. M., Lanier, W., Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101.CrossRefGoogle ScholarPubMed
Filippov, V., Solovyev, V., Filippova, M., Gill, S. S. A novel type of RNase III family proteins in eukaryotes. Gene. 2000;245:213–21.CrossRefGoogle ScholarPubMed
Ruiz-Arroyo, V. M., Nam, Y. Dynamic protein-RNA recognition in primary microRNA processing. Curr Opin Struct Biol. 2022;76:102442.CrossRefGoogle ScholarPubMed
Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.CrossRefGoogle ScholarPubMed
Kwon, S. C., Nguyen, T. A., Choi, Y. G., Jo, M. H., Hohng, S., Kim, V. N., et al. Structure of human DROSHA. Cell. 2016;164:8190.CrossRefGoogle ScholarPubMed
Partin, A. C., Zhang, K., Jeong, B. C., Herrell, E., Li, S., Chiu, W., et al. Cryo-EM structures of human drosha and DGCR8 in complex with primary microRNA. Mol Cell. 2020;78:411–22 e4.CrossRefGoogle ScholarPubMed
Morlando, M., Ballarino, M., Gromak, N., Pagano, F., Bozzoni, I., Proudfoot, N. J. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol. 2008;15:902–9.CrossRefGoogle ScholarPubMed
Ha, M., Kim, V. N. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.CrossRefGoogle ScholarPubMed
Treiber, T., Treiber, N., Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20:520.CrossRefGoogle ScholarPubMed
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., Kutay, U. Nuclear export of microRNA precursors. Science. 2004;303:95–8.CrossRefGoogle ScholarPubMed
Hammond, S. M., Bernstein, E., Beach, D., Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–6.CrossRefGoogle ScholarPubMed
Bernstein, E., Caudy, A. A., Hammond, S. M., Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.CrossRefGoogle ScholarPubMed
Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., Zamore, P. D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.CrossRefGoogle ScholarPubMed
Knight, S. W., Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001;293:2269–71.CrossRefGoogle ScholarPubMed
Shang, R., Lee, S., Senavirathne, G., Lai, E. C. MicroRNAs in action: biogenesis, function and regulation. Nat Rev Genet. 2023;24:816–33.CrossRefGoogle ScholarPubMed
Macrae, I. J., Zhou, K., Li, F., Repic, A., Brooks, A. N., Cande, W. Z., et al. Structural basis for double-stranded RNA processing by Dicer. Science. 2006;311:195–8.CrossRefGoogle ScholarPubMed
Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–4.CrossRefGoogle ScholarPubMed
Liu, Z., Wang, J., Cheng, H., Ke, X., Sun, L., Zhang, Q. C., et al. Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate. Cell. 2018;173:1191–203 e12.CrossRefGoogle ScholarPubMed
Ruby, J. G., Jan, C. H., Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–6.CrossRefGoogle ScholarPubMed
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130:89100.CrossRefGoogle ScholarPubMed
Berezikov, E., Chung, W. J., Willis, J., Cuppen, E., Lai, E. C. Mammalian mirtron genes. Mol Cell. 2007;28:328–36.CrossRefGoogle ScholarPubMed
Cheloufi, S., Dos Santos, C. O., Chong, M. M., Hannon, G. J. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465:584–9.CrossRefGoogle ScholarPubMed
Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., Zamore, P. D. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199208.CrossRefGoogle ScholarPubMed
Sheu-Gruttadauria, J., MacRae, I. J. Structural foundations of RNA silencing by Argonaute. J Mol Biol. 2017;429:2619–39.CrossRefGoogle ScholarPubMed
Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J., Joo, C. A dynamic search process underlies microRNA targeting. Cell. 2015;162:96107.CrossRefGoogle ScholarPubMed
Bartel, D. P. Metazoan microRNAs. Cell. 2018;173:2051.CrossRefGoogle ScholarPubMed
Schirle, N. T., MacRae, I. J. The crystal structure of human Argonaute2. Science. 2012;336:1037–40.CrossRefGoogle ScholarPubMed
Schirle, N. T., Sheu-Gruttadauria, J., MacRae, I. J. Structural basis for microRNA targeting. Science. 2014;346:608–13.CrossRefGoogle ScholarPubMed
Leung, A. K. L. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 2015;25:601–10.CrossRefGoogle ScholarPubMed
Trabucchi, M., Mategot, R. Subcellular heterogeneity of the microRNA machinery. Trends Genet. 2019;35:1528.CrossRefGoogle ScholarPubMed
Meller, R., Thompson, S. J., Lusardi, T. A., Ordonez, A. N., Ashley, M. D., Jessick, V., et al. Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. J Neurosci. 2008;28:50–9.CrossRefGoogle ScholarPubMed
Engel, T., Martinez-Villarreal, J., Henke, C., Jimenez-Mateos, E. M., Sanz-Rodriguez, A., Alves, M., et al. Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Mol Neurodegener. 2017;12:21.CrossRefGoogle ScholarPubMed
Ruegger, S., Grosshans, H. MicroRNA turnover: when, how, and why. Trends Biochem Sci. 2012;37:436–46.CrossRefGoogle ScholarPubMed
Krol, J., Loedige, I., Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597610.CrossRefGoogle ScholarPubMed
Han, J., Mendell, J. T. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci. 2023;48:2639.CrossRefGoogle ScholarPubMed
Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J., et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell. 2010;141:618–31.CrossRefGoogle ScholarPubMed
Ramachandran, V., Chen, X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science. 2008;321:1490–2.CrossRefGoogle ScholarPubMed
Han, J., LaVigne, C. A., Jones, B. T., Zhang, H., Gillett, F., Mendell, J. T. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science. 2020;370:eabc9546.CrossRefGoogle ScholarPubMed
Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–17.Google ScholarPubMed
Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.CrossRefGoogle ScholarPubMed
Wang, Y., Medvid, R., Melton, C., Jaenisch, R., Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39:380–5.CrossRefGoogle ScholarPubMed
Schaefer, A., O’Carroll, D., Tan, C. L., Hillman, D., Sugimori, M., Llinas, R., et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204:1553–8.CrossRefGoogle ScholarPubMed
Cuellar, T. L., Davis, T. H., Nelson, P. T., Loeb, G. B., Harfe, B. D., Ullian, E., et al. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci U S A. 2008;105:5614–19.CrossRefGoogle ScholarPubMed
Tao, J., Wu, H., Lin, Q., Wei, W., Lu, X. H., Cantle, J. P., et al. Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci. 2011;31:8306–19.CrossRefGoogle ScholarPubMed
Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E., Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A. 2005;102:10898–903.CrossRefGoogle Scholar
Hang, Q., Zeng, L., Wang, L., Nie, L., Yao, F., Teng, H., et al. Non-canonical function of DGCR8 in DNA double-strand break repair signaling and tumor radioresistance. Nat Commun. 2021;12:4033.CrossRefGoogle ScholarPubMed
La Rocca, G., King, B., Shui, B., Li, X., Zhang, M., Akat, K. M., et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. Elife. 2021;10:e70948.CrossRefGoogle ScholarPubMed
Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell. 2007;129:303–17.CrossRefGoogle ScholarPubMed
Heidersbach, A., Saxby, C., Carver-Moore, K., Huang, Y., Ang, Y. S., de Jong, P. J., et al. MicroRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife. 2013;2:e01323.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Williams, G. A., Cahill, H., Nathans, J. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science. 2007;315:1723–5.CrossRefGoogle ScholarPubMed
Busskamp, V., Krol, J., Nelidova, D., Daum, J., Szikra, T., Tsuda, B., et al. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron. 2014;83:586600.CrossRefGoogle ScholarPubMed
Lumayag, S., Haldin, C. E., Corbett, N. J., Wahlin, K. J., Cowan, C., Turturro, S., et al. Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A. 2013;110:E507–16.CrossRefGoogle ScholarPubMed
Xiang, L., Chen, X. J., Wu, K. C., Zhang, C. J., Zhou, G. H., Lv, J. N., et al. miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proc Natl Acad Sci U S A. 2017;114:6376–81.CrossRefGoogle Scholar
Schaefer, M., Nabih, A., Spies, D., Hermes, V., Bodak, M., Wischnewski, H., et al. Global and precise identification of functional miRNA targets in mESCs by integrative analysis. EMBO Rep. 2022;23:e54762.CrossRefGoogle ScholarPubMed
Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., Lee, J. Y., et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270:488–98.CrossRefGoogle ScholarPubMed
Li, L., Chen, K., Wu, Y., Long, Q., Zhao, D., Ma, B., et al. Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction. Cell Death Dis. 2017;8:e3107.CrossRefGoogle ScholarPubMed
Sinkkonen, L., Hugenschmidt, T., Berninger, P., Gaidatzis, D., Mohn, F., Artus-Revel, C. G., et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol. 2008;15:259–67.CrossRefGoogle ScholarPubMed
Mansfield, J. H., McGlinn, E. Evolution, expression, and developmental function of Hox-embedded miRNAs. Curr Top Dev Biol. 2012;99:3157.CrossRefGoogle ScholarPubMed
Lutz, B., Lu, H. C., Eichele, G., Miller, D., Kaufman, T. C. Rescue of Drosophila labial null mutant by the chicken ortholog Hoxb-1 demonstrates that the function of Hox genes is phylogenetically conserved. Genes Dev. 1996;10:176–84.CrossRefGoogle ScholarPubMed
Yekta, S., Shih, I. H., Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304:594–6.CrossRefGoogle ScholarPubMed
Yekta, S., Tabin, C. J., Bartel, D. P. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet. 2008;9:789–96.CrossRefGoogle ScholarPubMed
Banisch, T. U., Goudarzi, M., Raz, E. Small RNAs in germ cell development. Curr Top Dev Biol. 2012;99:79113.CrossRefGoogle ScholarPubMed
Galagali, H., Kim, J. K. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol. 2020;67:118–40.CrossRefGoogle ScholarPubMed
Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., Van Dongen, S., Inoue, K., et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312:75–9.CrossRefGoogle ScholarPubMed
Perez, M. F., Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol. 2019;21:143–51.CrossRefGoogle ScholarPubMed
Dunn, G. A., Morgan, C. P., Bale, T. L. Sex-specificity in transgenerational epigenetic programming. Horm Behav. 2011;59:290–5.CrossRefGoogle ScholarPubMed
Vagero, D., Pinger, P. R., Aronsson, V., van den Berg, G. J. Paternal grandfather’s access to food predicts all-cause and cancer mortality in grandsons. Nat Commun. 2018;9:5124.CrossRefGoogle ScholarPubMed
De Rooij, S. R., Bleker, L. S., Painter, R. C., Ravelli, A. C., Roseboom, T. J. Lessons learned from 25 years of research into long term consequences of prenatal exposure to the Dutch famine 1944–45: the Dutch famine birth cohort. Int J Environ Health Res. 2022;32:1432–46.CrossRefGoogle Scholar
Bale, T. L. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. 2015;16:332–44.CrossRefGoogle ScholarPubMed
Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9.CrossRefGoogle ScholarPubMed
Ostermeier, G. C., Goodrich, R. J., Moldenhauer, J. S., Diamond, M. P., Krawetz, S. A. A suite of novel human spermatozoal RNAs. J Androl. 2005;26:70–4.CrossRefGoogle ScholarPubMed
Liu, W. M., Pang, R. T., Chiu, P. C., Wong, B. P., Lao, K., Lee, K. F., et al. Sperm-borne microRNA-34 c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109:490–4.Google Scholar
Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S., Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–12.CrossRefGoogle ScholarPubMed
Rodgers, A. B., Morgan, C. P., Leu, N. A., Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112:13699–704.CrossRefGoogle ScholarPubMed
Fullston, T., Ohlsson Teague, E. M., Palmer, N. O., DeBlasio, M. J., Mitchell, M., Corbett, M., et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27:4226–43.CrossRefGoogle Scholar
Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefGoogle ScholarPubMed
Lin, S. L., Chang, D. C., Chang-Lin, S., Lin, C. H., Wu, D. T., Chen, D. T., et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14:2115–24.CrossRefGoogle ScholarPubMed
Judson, R. L., Babiarz, J. E., Venere, M., Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27:459–61.CrossRefGoogle ScholarPubMed
Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011;476:228–31.CrossRefGoogle ScholarPubMed
Jayawardena, T. M., Egemnazarov, B., Finch, E. A., Zhang, L., Payne, J. A., Pandya, K., et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465–73.CrossRefGoogle ScholarPubMed
Nam, Y. J., Song, K., Luo, X., Daniel, E., Lambeth, K., West, K., et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci. 2013;110:5588–93.CrossRefGoogle Scholar
Jayawardena, T. M., Finch, E. A., Zhang, L., Zhang, H., Hodgkinson, C. P., Pratt, R. E., et al. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res. 2015;116:418–24.CrossRefGoogle ScholarPubMed
DeVeale, B., Swindlehurst-Chan, J., Blelloch, R. The roles of microRNAs in mouse development. Nat Rev Genet. 2021;22:307–23.CrossRefGoogle ScholarPubMed
Zhou, Y., Song, H., Ming, G. L. Genetics of human brain development. Nat Rev Genet. 2023.CrossRefGoogle Scholar
Bystron, I., Rakic, P., Molnar, Z., Blakemore, C. The first neurons of the human cerebral cortex. Nat Neurosci. 2006;9:880–6.CrossRefGoogle ScholarPubMed
Yoo, A. S., Staahl, B. T., Chen, L., Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009;460:642–6.CrossRefGoogle ScholarPubMed
Ziats, M. N., Rennert, O. M. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 2014;19:848–52.CrossRefGoogle ScholarPubMed
Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. Proteomics: tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRefGoogle ScholarPubMed
Marom, S., Marder, E. A biophysical perspective on the resilience of neuronal excitability across timescales. Nat Rev Neurosci. 2023;24:640–52.CrossRefGoogle ScholarPubMed
Baczynska, E., Pels, K. K., Basu, S., Wlodarczyk, J., Ruszczycki, B. Quantification of dendritic spines remodeling under physiological stimuli and in pathological conditions. Int J Mol Sci. 2021;22:4053–74.CrossRefGoogle ScholarPubMed
Holt, C. E., Martin, K. C., Schuman, E. M. Local translation in neurons: visualization and function. Nat Struct Mol Biol. 2019;26:557–66.CrossRefGoogle ScholarPubMed
Perez, J. D., Fusco, C. M., Schuman, E. M. A functional dissection of the mRNA and locally synthesized protein population in neuronal dendrites and axons. Annu Rev Genet. 2021;55:183207.CrossRefGoogle ScholarPubMed
Perez, J. D., Dieck, S. T., Alvarez-Castelao, B., Tushev, G., Chan, I. C., Schuman, E. M. Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons. Elife. 2021;10:e63092.CrossRefGoogle ScholarPubMed
Lugli, G., Larson, J., Martone, M. E., Jones, Y., Smalheiser, N. R. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem. 2005;94:896905.CrossRefGoogle Scholar
Lugli, G., Torvik, V. I., Larson, J., Smalheiser, N. R. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem. 2008;106:650–61.CrossRefGoogle ScholarPubMed
Thomas, M. G., Pascual, M. L., Maschi, D., Luchelli, L., Boccaccio, G. L. Synaptic control of local translation: the plot thickens with new characters. Cell Mol Life Sci. 2014;71:2219–39.CrossRefGoogle ScholarPubMed
Dalla Costa, I., Buchanan, C. N., Zdradzinski, M. D., Sahoo, P. K., Smith, T. P., Thames, E., et al. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci. 2021;22:7791.CrossRefGoogle ScholarPubMed
Bicker, S., Khudayberdiev, S., Weiss, K., Zocher, K., Baumeister, S., Schratt, G. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev. 2013;27:991–6.CrossRefGoogle ScholarPubMed
Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102:16426–31.CrossRefGoogle ScholarPubMed
Sambandan, S., Akbalik, G., Kochen, L., Rinne, J., Kahlstatt, J., Glock, C., et al. Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science. 2017;355:634–7.CrossRefGoogle ScholarPubMed
Banerjee, S., Neveu, P., Kosik, K. S. A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron. 2009;64:871–84.CrossRefGoogle ScholarPubMed
Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283–9.CrossRefGoogle ScholarPubMed
Park, I., Kim, H. J., Kim, Y., Hwang, H. S., Kasai, H., Kim, J. H., et al. Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines. Proc Natl Acad Sci U S A. 2019;116:9616–21.CrossRefGoogle ScholarPubMed
Stenvang, J., Petri, A., Lindow, M., Obad, S., Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3:1.CrossRefGoogle ScholarPubMed
Christensen, M., Larsen, L. A., Kauppinen, S., Schratt, G. Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo. Front Neural Circuits. 2010;3:16.Google ScholarPubMed
Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen, M., et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol. 2009;11:705–16.CrossRefGoogle ScholarPubMed
Daswani, R., Gilardi, C., Soutschek, M., Nanda, P., Weiss, K., Bicker, S., et al. MicroRNA-138 controls hippocampal interneuron function and short-term memory in mice. Elife. 2022;11:e74056.CrossRefGoogle ScholarPubMed
Lackinger, M., Sungur, A. O., Daswani, R., Soutschek, M., Bicker, S., Stemmler, L., et al. A placental mammal-specific microRNA cluster acts as a natural brake for sociability in mice. EMBO Rep. 2019;20:e46429.CrossRefGoogle ScholarPubMed
Soutschek, M., Schratt, G. Non-coding RNA in the wiring and remodeling of neural circuits. Neuron. 2023;111:2140–54.CrossRefGoogle Scholar
Sierra-Paredes, G., Oreiro-Garcia, T., Nunez-Rodriguez, A., Vazquez-Lopez, A., Sierra-Marcuno, G. Seizures induced by in vivo latrunculin a and jasplakinolide microperfusion in the rat hippocampus. J Mol Neurosci. 2006;28:151–60.CrossRefGoogle ScholarPubMed
Jimenez-Mateos, E. M., Engel, T., Merino-Serrais, P., McKiernan, R. C., Tanaka, K., Mouri, G., et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012;18:1087–94.CrossRefGoogle ScholarPubMed
Jimenez-Mateos, E. M., Engel, T., Merino-Serrais, P., Fernaud-Espinosa, I., Rodriguez-Alvarez, N., Reynolds, J., et al. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct. 2015;220:2387–99.CrossRefGoogle ScholarPubMed
Morris, G., Brennan, G. P., Reschke, C. R., Henshall, D. C., Schorge, S. Spared CA1 pyramidal neuron function and hippocampal performance following antisense knockdown of microRNA-134. Epilepsia. 2018;59:1518–26.CrossRefGoogle ScholarPubMed
Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A. 2008;105:9093–8.CrossRefGoogle ScholarPubMed
Magill, S. T., Cambronne, X. A., Luikart, B. W., Lioy, D. T., Leighton, B. H., Westbrook, G. L., et al. MicroRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010;107:20382–7.CrossRefGoogle ScholarPubMed
Hansen, K. F., Karelina K., Sakamoto, K., Wayman, G. A., Impey, S., Obrietan, K. miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct. 2013;218:817–31.CrossRefGoogle ScholarPubMed
Chai, S., Cambronne, X. A., Eichhorn, S. W., Goodman, R. H. MicroRNA-134 activity in somatostatin interneurons regulates H-Ras localization by repressing the palmitoylation enzyme, DHHC9. Proc Natl Acad Sci U S A. 2013;110:17898–903.CrossRefGoogle ScholarPubMed
Gao, J., Wang, W. Y., Mao, Y. W., Graff, J., Guan, J. S., Pan, L., et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466:1105–9.CrossRefGoogle ScholarPubMed
Guedes-Dias, P., Holzbaur, E. L. F. Axonal transport: driving synaptic function. Science. 2019;366:eaaw9997.CrossRefGoogle ScholarPubMed
Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524:220–4.CrossRefGoogle ScholarPubMed
Zolotarov, G., Fromm, B., Legnini, I., Ayoub, S., Polese, G., Maselli, V., et al. MicroRNAs are deeply linked to the emergence of the complex octopus brain. Sci Adv. 2022;8:eadd9938.CrossRefGoogle Scholar
Yu, B., Zhang, Q., Lin, L., Zhou, X., Ma, W., Wen, S., et al. Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling. Cell Discov. 2023;9:19.CrossRefGoogle ScholarPubMed
Haramati, S., Navon, I., Issler, O., Ezra-Nevo, G., Gil, S., Zwang, R., et al. MicroRNA as repressors of stress-induced anxiety: the case of Amygdalar miR-34. J Neurosci. 2011;31:14191–203.CrossRefGoogle ScholarPubMed
Volk, N., Pape, J. C., Engel, M., Zannas, A. S., Cattane, N., Cattaneo, A., et al. Amygdalar microRNA-15a is essential for coping with chronic stress. Cell Rep. 2016;17:1882–91.CrossRefGoogle ScholarPubMed
Issler, O., Chen, A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16:201–12.CrossRefGoogle ScholarPubMed
Cheng, Y., Wang, Z. M., Tan, W., Wang, X., Li, Y., Bai, B., et al. Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat Neurosci. 2018;21:1689–703.CrossRefGoogle ScholarPubMed
Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., Hsu, R., et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008;40:751–60.CrossRefGoogle Scholar
Lopez, J. P., Lim, R., Cruceanu, C., Crapper, L., Fasano, C., Labonte, B., et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med. 2014;20:764–8.CrossRefGoogle ScholarPubMed
Martins, H. C., Gilardi, C., Sungur, A. O., Winterer, J., Pelzl, M. A., Bicker, S., et al. Bipolar-associated miR-499-5p controls neuroplasticity by downregulating the Cav1.2 subunit CACNB2. EMBO Rep. 2022;23:e54420.CrossRefGoogle ScholarPubMed
Haramati, S., Chapnik, E., Sztainberg, Y., Eilam, R., Zwang, R., Gershoni, N., et al. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010;107:13111–16.CrossRefGoogle ScholarPubMed
Amin, N. D., Bai, G., Klug, J. R., Bonanomi, D., Pankratz, M. T., Gifford, W. D., et al. Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science. 2015;350:1525–9.CrossRefGoogle ScholarPubMed
Reichenstein, I., Eitan, C., Diaz-Garcia, S., Haim, G., Magen, I., Siany, A., et al. Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med. 2019;11:eaav5264.CrossRefGoogle ScholarPubMed
Browne, T. R., Holmes, G. L. Epilepsy. N Engl J Med. 2001;344:1145–51.CrossRefGoogle ScholarPubMed
Chang, B. S., Lowenstein, D. H. Epilepsy. N Engl J Med. 2003;349:1257–66.CrossRefGoogle ScholarPubMed
Kwan, P., Schachter, S. C., Brodie, M. J. Drug-resistant epilepsy. N Engl J Med. 2011;365:919–26.CrossRefGoogle ScholarPubMed
Devinsky, O., Vezzani, A., O’Brien, T. J., Jette, N., Scheffer, I. E., de Curtis, M., et al. Epilepsy. Nat Rev Dis Primers. 2018;4:18024.CrossRefGoogle ScholarPubMed
Sen, A., Jette, N., Husain, M., Sander, J. W. Epilepsy in older people. Lancet. 2020;395:735–48.CrossRefGoogle ScholarPubMed
Chevaleyre, V., Piskorowski, R. A. Hippocampal area CA2: an overlooked but promising therapeutic target. Trends Mol Med. 2016;22:645–55.CrossRefGoogle ScholarPubMed
Sommer, W. Erkrankung des ammonshorns als aetiologisches moment der epilepsie. Arch Psychiatr Nervenkr. 1880;10:631–75.CrossRefGoogle Scholar
Asadi-Pooya, A. A., Rostami, C. History of surgery for temporal lobe epilepsy. Epilepsy Behav. 2017;70:5760.CrossRefGoogle ScholarPubMed
Chun, E., Bumanglag, A. V., Burke, S. N., Sloviter, R. S. Targeted hippocampal GABA neuron ablation by stable substance P-saporin causes hippocampal sclerosis and chronic epilepsy in rats. Epilepsia. 2019;60:e52–7.CrossRefGoogle ScholarPubMed
Blumcke, I., Spreafico, R., Haaker, G., Coras, R., Kobow, K., Bien, C. G., et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377:1648–56.CrossRefGoogle ScholarPubMed
Blauwblomme, T., Jiruska, P., Huberfeld, G. Mechanisms of ictogenesis. Int Rev Neurobiol. 2014;114:155–85.CrossRefGoogle ScholarPubMed
Glykys, J., Dzhala, V., Egawa, K., Kahle, K. T., Delpire, E., Staley, K. Chloride dysregulation, seizures, and cerebral edema: a relationship with therapeutic potential. Trends Neurosci. 2017;40:276–94.CrossRefGoogle ScholarPubMed
Elahian, B., Lado, N. E., Mankin, E., Vangala, S., Misra, A., Moxon, K., et al. Low-voltage fast seizures in humans begin with increased interneuron firing. Ann Neurol. 2018;84:588600.CrossRefGoogle ScholarPubMed
Miri, M. L., Vinck, M., Pant, R., Cardin, J. A. Altered hippocampal interneuron activity precedes ictal onset. Elife. 2018;7:e40750.CrossRefGoogle ScholarPubMed
Boison, D. The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol. 2008;84:249–62.CrossRefGoogle ScholarPubMed
Ziemann, A. E., Schnizler, M. K., Albert, G. W., Severson, M. A., Howard, M. A., III, Welsh, M. J., et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci. 2008;11:816–22.CrossRefGoogle ScholarPubMed
Orr, R. S. History of a case of epilepsy, accompanied with fever, inflammation, perforation, and gangrene of the lungs, and also pneumothorax. Edinb Med Surg J. 1852;77:1023.Google ScholarPubMed
Chen, Z., Brodie, M. J., Liew, D., Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75:279–86.CrossRefGoogle ScholarPubMed
Welch, C., Chen, Y., Stallings, R. L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.CrossRefGoogle ScholarPubMed
Liu, D. Z., Tian, Y., Ander, B. P., Xu, H., Stamova, B. S., Zhan, X., et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30:92101.CrossRefGoogle ScholarPubMed
Nudelman, A. S., DiRocco, D. P., Lambert, T. J., Garelick, M. G., Le, J., Nathanson, N. M., et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20:492–8.CrossRefGoogle ScholarPubMed
Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E. A., et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31:1100–7.CrossRefGoogle ScholarPubMed
Reschke, C. R., Silva, L. F. A., Vangoor, V. R., Rosso, M., David, B., Cavanagh, B. L., et al. Systemic delivery of antagomirs during blood–brain barrier disruption is disease-modifying in experimental epilepsy. Mol Ther. 2021;29:2041–52.CrossRefGoogle ScholarPubMed
McKiernan, R. C., Jimenez-Mateos, E. M., Bray, I., Engel, T., Brennan, G. P., Sano, T., et al. Reduced mature microRNA levels in association with Dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One. 2012;7:e35921.CrossRefGoogle ScholarPubMed
Iadarola, M. J., Gale, K. Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science. 1982;218:1237–40.CrossRefGoogle ScholarPubMed
Tan, C. L., Plotkin, J. L., Veno, M. T., von Schimmelmann, M., Feinberg, P., Mann, S., et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013;342:1254–8.CrossRefGoogle ScholarPubMed
Sosanya, N. M., Huang, P. P., Cacheaux, L. P., Chen, C. J., Nguyen, K., Perrone-Bizzozero, N. I., et al. Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1. J Cell Biol. 2013;202:5369.CrossRefGoogle ScholarPubMed
Gross, C., Yao, X., Engel, T., Xing, L., Danielson, S. W., Thomas, K. T., et al. MicroRNA-mediated downregulation of the potassium channel Kv4.2 contributes to seizure onset. Cell Rep. 2016;17:3745.CrossRefGoogle ScholarPubMed
Kim, K. W., Kim, K., Kim, H. J., Kim, B. I., Baek, M., Suh, B. C. Posttranscriptional modulation of KCNQ2 gene expression by the miR-106b microRNA family. Proc Natl Acad Sci U S A. 2021;118:e2110200118.CrossRefGoogle ScholarPubMed
Vezzani, A., French, J., Bartfai, T., Baram, T. Z. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:3140.CrossRefGoogle ScholarPubMed
Husari, K. S., Dubey, D. Autoimmune epilepsy. Neurotherapeutics. 2019;16:685702.CrossRefGoogle ScholarPubMed
Kumar, P., Lim, A., Hazirah, S. N., Chua, C. J. H., Ngoh, A., Poh, S. L., et al. Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling. Nat Neurosci. 2022;25:956–66.CrossRefGoogle ScholarPubMed
Roth, T. L., Nayak, D., Atanasijevic, T., Koretsky, A. P., Latour, L. L., McGavern, D. B. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 2014;505:223–8.CrossRefGoogle Scholar
Badimon, A., Strasburger, H. J., Ayata, P., Chen, X., Nair, A., Ikegami, A., et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586:417–23.CrossRefGoogle ScholarPubMed
Srivastava, P. K., van Eyll, J., Godard, P., Mazzuferi, M., Delahaye-Duriez, A., Steenwinckel, J. V., et al. A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat Commun. 2018;9:3561.CrossRefGoogle ScholarPubMed
Iori, V., Iyer, A. M., Ravizza, T., Beltrame, L., Paracchini, L., Marchini, S., et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis. 2017;99:1223.CrossRefGoogle Scholar
Henshall, D. C., Clark, R. S., Adelson, P. D., Chen, M., Watkins, S. C., Simon, R. P. Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology. 2000;55:250–7.CrossRefGoogle ScholarPubMed
Khakh, B. S., North, R. A. P2X receptors as cell-surface ATP sensors in health and disease. Nature. 2006;442:527–32.CrossRefGoogle ScholarPubMed
Surprenant, A., North, R. A. Signaling at purinergic P2X receptors. Annu Rev Physiol. 2009;71:333–59.CrossRefGoogle ScholarPubMed
Jimenez-Mateos, E. M., Arribas-Blazquez, M., Sanz-Rodriguez, A., Concannon, C., Olivos-Ore, L. A., Reshcke, C. R., et al. MicroRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific Reports. 2015;5:e17486.CrossRefGoogle ScholarPubMed
Engel, T., Brennan, G. P., Sanz-Rodriguez, A., Alves, M., Beamer, E., Watters, O., et al. A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. Biochim Biophys Acta. 2017;1864:255–66.Google ScholarPubMed
Flores, O., Kennedy, E. M., Skalsky, R. L., Cullen, B. R. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res. 2014;42:4629–39.CrossRefGoogle ScholarPubMed
Veno, M. T., Reschke, C. R., Morris, G., Connolly, N. M. C., Su, J., Yan, Y., et al. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A. 2020;117:15977–88.CrossRefGoogle ScholarPubMed
Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R., Riccio, A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20:235–48.CrossRefGoogle ScholarPubMed
Buiting, K., Williams, C., Horsthemke, B. Angelman syndrome – insights into a rare neurogenetic disorder. Nat Rev Neurol. 2016;12:584–93.CrossRefGoogle ScholarPubMed
Valluy, J., Bicker, S., Aksoy-Aksel, A., Lackinger, M., Sumer, S., Fiore, R., et al. A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat Neurosci. 2015;18:666–73.CrossRefGoogle ScholarPubMed
Campbell, A., Morris, G., Sanfeliu, A., Augusto, J., Langa, E., Kesavan, J. C., et al. AntimiR targeting of microRNA-134 reduces seizures in a mouse model of Angelman syndrome. Mol Ther Nucleic Acids. 2022;28:514–29.CrossRefGoogle Scholar
Krook-Magnuson, E., Szabo, G. G., Armstrong, C., Oijala, M., Soltesz, I. Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro. 2014;1:ENEURO.0005-14.2014.CrossRefGoogle Scholar
Avagliano Trezza, R., Sonzogni, M., Bossuyt, S. N. V., Zampeta, F. I., Punt, A. M., van den Berg, M., et al. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat Neurosci. 2019;22:1235–47.CrossRefGoogle ScholarPubMed
Wallace, R. H., Scheffer, I. E., Barnett, S., Richards, M., Dibbens, L., Desai, R. R., et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2001;68:859–65.CrossRefGoogle ScholarPubMed
Escayg, A., Heils, A., MacDonald, B. T., Haug, K., Sander, T., Meisler, M. H. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus – and prevalence of variants in patients with epilepsy. Am J Hum Genet. 2001;68:866–73.CrossRefGoogle ScholarPubMed
Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C., De Jonghe, P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68:1327–32.CrossRefGoogle ScholarPubMed
Yu, F. H., Mantegazza, M., Westenbroek, R. E., Robbins, C. A., Kalume, F., Burton, K. A., et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006;9:1142–9.CrossRefGoogle Scholar
Gerbatin, R. R., Augusto, J., Morris, G., Campbell, A., Worm, J., Langa, E., et al. Investigation of microRNA-134 as a target against seizures and SUDEP in a mouse model of Dravet syndrome. eNeuro. 2022;9:ENEURO.0112-22.2022.CrossRefGoogle Scholar
Heiland, M., Connolly, N. M. C., Mamad, O., Nguyen, N. T., Kesavan, J. C., Langa, E., et al. MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control. Proc Natl Acad Sci USA. 2023;120:e2216658120.CrossRefGoogle ScholarPubMed
Rosenthal, J. J., Seeburg, P. H. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron. 2012;74:432–9.CrossRefGoogle ScholarPubMed
Eisenberg, E., Levanon, E. Y. A-to-I RNA editing – immune protector and transcriptome diversifier. Nat Rev Genet. 2018;19:473–90.CrossRefGoogle ScholarPubMed
Benne, R., Van den Burg, J., Brakenhoff, J. P., Sloof, P., Van Boom, J. H., Tromp, M. C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819–26.CrossRefGoogle Scholar
Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17:8396.CrossRefGoogle ScholarPubMed
Luciano, D. J., Mirsky, H., Vendetti, N. J., Maas, S. RNA editing of a miRNA precursor. RNA. 2004;10:1174–7.CrossRefGoogle ScholarPubMed
Kawahara, Y., Megraw, M., Kreider, E., Iizasa, H., Valente, L., Hatzigeorgiou, A. G., et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36:5270–80.CrossRefGoogle ScholarPubMed
Ekdahl, Y., Farahani, H. S., Behm, M., Lagergren, J., Ohman, M. A-to-I editing of microRNAs in the mammalian brain increases during development. Genome Res. 2012;22:1477–87.CrossRefGoogle ScholarPubMed
Lau, K. E. H., Nguyen, N. T., Kesavan, J. C., Langa, E., Fanning, K., Brennan, G. P., et al. Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun. 2024; fcad 355:1–17.Google Scholar
Stenzel-Poore, M. P., Stevens, S. L., Xiong, Z., Lessov, N. S., Harrington, C. A., Mori, M., et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet. 2003;362:1028–37.CrossRefGoogle ScholarPubMed
Caciagli, L., Bernasconi, A., Wiebe, S., Koepp, M. J., Bernasconi, N., Bernhardt, B. C. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: time is brain? Neurology. 2017;89:506–16.CrossRefGoogle ScholarPubMed
Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.CrossRefGoogle ScholarPubMed
Hsu, S. H., Wang, B., Kota, J., Yu, J., Costinean, S., Kutay, H., et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–83.CrossRefGoogle ScholarPubMed
Tsai, W. C., Hsu, S. D., Hsu, C. S., Lai, T. C., Chen, S. J., Shen, R., et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122:2884–97.CrossRefGoogle Scholar
Lindow, M., Kauppinen, S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012;199:407–12.CrossRefGoogle ScholarPubMed
Spearman, C. W., Dusheiko, G. M., Hellard, M., Sonderup, M. Hepatitis C. Lancet. 2019;394:1451–66.CrossRefGoogle ScholarPubMed
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309:1577–81.CrossRefGoogle ScholarPubMed
Henke, J. I., Goergen, D., Zheng, J., Song, Y., Schuttler, C. G., Fehr, C., et al. MicroRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008;27:3300–10.CrossRefGoogle ScholarPubMed
Gebert, L. F. R., Law, M., MacRae, I. J. A structured RNA motif locks Argonaute2:miR-122 onto the 5’ end of the HCV genome. Nat Commun. 2021;12:6836.CrossRefGoogle ScholarPubMed
Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W. H., Chi, J. T., et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature. 2007;450:1096–9.CrossRefGoogle ScholarPubMed
Gorbea, C., Mosbruger, T., Cazalla, D. A viral Sm-class RNA base-pairs with mRNAs and recruits microRNAs to inhibit apoptosis. Nature. 2017;550:275–9.CrossRefGoogle ScholarPubMed
Ziv, O., Gabryelska, M. M., Lun, A. T. L., Gebert, L. F. R., Sheu-Gruttadauria, J., Meredith, L. W., et al. COMRADES determines in vivo RNA structures and interactions. Nat Methods. 2018;15:785–8.CrossRefGoogle ScholarPubMed
Crooke, S. T., Baker, B. F., Crooke, R. M., Liang, X. H. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20:427–53.CrossRefGoogle ScholarPubMed
Tolstrup, N., Nielsen, P. S., Kolberg, J. G., Frankel, A. M., Vissing, H., Kauppinen, S. OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res. 2003;31:3758–62.CrossRefGoogle ScholarPubMed
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., et al. A cellular microRNA mediates antiviral defense in human cells. Science. 2005;308:557–60.CrossRefGoogle ScholarPubMed
Elmen, J., Lindow, M., Silahtaroglu, A., Bak, M., Christensen, M., Lind-Thomsen, A., et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36:1153–62.CrossRefGoogle ScholarPubMed
Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.CrossRefGoogle ScholarPubMed
Janssen, H. L., Reesink, H. W., Lawitz, E. J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94.CrossRefGoogle ScholarPubMed
Pedersen, I. M., Cheng, G., Wieland, S., Volinia, S., Croce, C. M., Chisari, F. V., et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007;449:919–22.CrossRefGoogle ScholarPubMed
Gebert, L. F., Rebhan, M. A., Crivelli, S. E., Denzler, R., Stoffel, M., Hall, J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42:609–21.CrossRefGoogle ScholarPubMed
Ucar, A., Gupta, S. K., Fiedler, J., Erikci, E., Kardasinski, M., Batkai, S., et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078.CrossRefGoogle ScholarPubMed
Rho, J. M., White, H. S. Brief history of anti-seizure drug development. Epilepsia Open. 2018;3:114–19.CrossRefGoogle ScholarPubMed
French, J. A., Lawson, J. A., Yapici, Z., Ikeda, H., Polster, T., Nabbout, R., et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388:2153–63.CrossRefGoogle ScholarPubMed
Kotulska, K., Kwiatkowski, D. J., Curatolo, P., Weschke, B., Riney, K., Jansen, F., et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89:304–14.CrossRefGoogle ScholarPubMed
Morris, G., Reschke, C. R., Henshall, D. C. Targeting microRNA-134 for seizure control and disease modification in epilepsy. EBioMedicine. 2019;45:646–54.CrossRefGoogle ScholarPubMed
Ruber, T., David, B., Luchters, G., Nass, R. D., Friedman, A., Surges, R., et al. Evidence for peri-ictal blood–brain barrier dysfunction in patients with epilepsy. Brain. 2018;141:2952–65.CrossRefGoogle ScholarPubMed
Brennan, G. P., Dey, D., Chen, Y., Patterson, K. P., Magnetta, E. J., Hall, A. M., et al. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep. 2016;14:2402–12.CrossRefGoogle ScholarPubMed
Wirth, T., Parker, N., Yla-Herttuala, S. History of gene therapy. Gene. 2013;525:162–9.CrossRefGoogle ScholarPubMed
Ingusci, S., Verlengia, G., Soukupova, M., Zucchini, S., Simonato, M. Gene therapy tools for brain diseases. Front Pharmacol. 2019;10:724.CrossRefGoogle ScholarPubMed
Feldman, E. L., Goutman, S. A., Petri, S., Mazzini, L., Savelieff, M. G., Shaw, P. J., et al. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363–80.CrossRefGoogle ScholarPubMed
Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:5962.CrossRefGoogle ScholarPubMed
Stoica, L., Todeasa, S. H., Cabrera, G. T., Salameh, J. S., ElMallah, M. K., Mueller, C., et al. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann Neurol. 2016;79:687700.CrossRefGoogle Scholar
Borel, F., Gernoux, G., Sun, H., Stock, R., Blackwood, M., Brown, R. H., Jr., et al. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med. 2018;10:eaau6414.CrossRefGoogle ScholarPubMed
Mueller, C., Berry, J. D., McKenna-Yasek, D. M., Gernoux, G., Owegi, M. A., Pothier, L. M., et al. SOD1 suppression with adeno-associated virus and microRNA in familial ALS. N Engl J Med. 2020;383:151–8.CrossRefGoogle ScholarPubMed
Walker, F. O. Huntington’s disease. Lancet. 2007;369:218–28.CrossRefGoogle ScholarPubMed
Harper, S. Q., Staber, P. D., He, X., Eliason, S. L., Martins, I. H., Mao, Q., et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A. 2005;102:5820–5.CrossRefGoogle Scholar
Valles, A., Evers, M. M., Stam, A., Sogorb-Gonzalez, M., Brouwers, C., Vendrell-Tornero, C., et al. Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal microRNA-based gene therapy. Sci Transl Med. 2021;13:eabb8920.CrossRefGoogle ScholarPubMed
Bekenstein, U., Mishra, N., Milikovsky, D. Z., Hanin, G., Zelig, D., Sheintuch, L., et al. Dynamic changes in murine forebrain miR-211 expression associate with cholinergic imbalances and epileptiform activity. Proc Natl Acad Sci U S A. 2017;114:E4996E5005.CrossRefGoogle ScholarPubMed
Brodie, M. J. Sodium channel blockers in the treatment of epilepsy. CNS Drugs. 2017;31:527–34.CrossRefGoogle ScholarPubMed
Meisler, M. H., Hill, S. F., Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat Rev Neurosci. 2021;22:152–66.Google ScholarPubMed
Rosenberg, E. C., Tsien, R. W., Whalley, B. J., Devinsky, O. Cannabinoids and epilepsy. Neurotherapeutics. 2015;12:747–68.CrossRefGoogle ScholarPubMed
Devinsky, O., Cross, J. H., Laux, L., Marsh, E., Miller, I., Nabbout, R., et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20.CrossRefGoogle ScholarPubMed
Raoof, R., Bauer, S., El Naggar, H., Connolly, N. M. C., Brennan, G. P., Brindley, E., et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine. 2018;38:127–41.CrossRefGoogle ScholarPubMed
Benavides-Piccione, R., Regalado-Reyes, M., Fernaud-Espinosa, I., Kastanauskaite, A., Tapia-Gonzalez, S., Leon-Espinosa, G., et al. Differential structure of hippocampal CA1 pyramidal neurons in the human and mouse. Cereb Cortex. 2020;30:730–52.Google ScholarPubMed
Richards, R. K., Everett, G. M. Tridione: a new anticonvulsant drug. J Lab Clin Med. 1946;31:1330–6.Google ScholarPubMed
Klitgaard, H., Matagne, A., Gobert, J., Wulfert, E. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol. 1998;353:191206.CrossRefGoogle ScholarPubMed
De Santi, C., Fernandez Fernandez, E., Gaul, R., Vencken, S., Glasgow, A., Oglesby, I. K., et al. Precise targeting of miRNA sites restores CFTR activity in CF bronchial epithelial cells. Mol Ther. 2020;28:1190–9.CrossRefGoogle ScholarPubMed
Shteinberg, M., Haq, I. J., Polineni, D., Davies, J. C. Cystic fibrosis. Lancet. 2021;397:2195–211.CrossRefGoogle ScholarPubMed
Han, Z., Chen, C., Christiansen, A., Ji, S., Lin, Q., Anumonwo, C., et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci Transl Med. 2020;12:eabb8920.CrossRefGoogle Scholar
Qiu, Y., O’Neill, N., Maffei, B., Zourray, C., Almacellas-Barbanoj, A., Carpenter, J. C., et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science. 2022;378:523–32.CrossRefGoogle ScholarPubMed
Hogg, M. C., Raoof, R., El Naggar, H., Monsefi, N., Delanty, N., O’Brien, D. F., et al. Elevation in plasma tRNA fragments precede seizures in human epilepsy. J Clin Invest. 2019;129:2946–51.CrossRefGoogle ScholarPubMed
Matsuura, S., Ono, H., Kawasaki, S., Kuang, Y., Fujita, Y., Saito, H. Synthetic RNA-based logic computation in mammalian cells. Nat Commun. 2018;9:4847.CrossRefGoogle ScholarPubMed
Pitkanen, A., Loscher, W., Vezzani, A., Becker, A. J., Simonato, M., Lukasiuk, K., et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15:843–56.CrossRefGoogle ScholarPubMed
Simonato, M., Agoston, D. V., Brooks-Kayal, A., Dulla, C., Fureman, B., Henshall, D. C., et al. Identification of clinically relevant biomarkers of epileptogenesis – a strategic roadmap. Nat Rev Neurol. 2021;17:231–42.CrossRefGoogle ScholarPubMed
Mandel, P., Metais, P. Nuclear acids in human blood plasma. C R Seances Soc Biol Fil. 1948;142:241–3.Google ScholarPubMed
Gruner, H. N., McManus, M. T. Examining the evidence for extracellular RNA function in mammals. Nat Rev Genet. 2021;22:448–58.CrossRefGoogle ScholarPubMed
El-Hefnawy, T., Raja, S., Kelly, L., Bigbee, W. L., Kirkwood, J. M., Luketich, J. D., et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem. 2004;50:564–73.CrossRefGoogle ScholarPubMed
Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–18.CrossRefGoogle ScholarPubMed
Van Niel, G., D’Angelo, G., Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.CrossRefGoogle ScholarPubMed
Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., Lotvall, J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.CrossRefGoogle ScholarPubMed
Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.CrossRefGoogle ScholarPubMed
Turchinovich, A., Weiz, L., Langheinz, A., Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33.CrossRefGoogle ScholarPubMed
Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A. 2014;111:14888–93.CrossRefGoogle ScholarPubMed
Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.CrossRefGoogle ScholarPubMed
Kenny, A., Jimenez-Mateos, E. M., Zea-Sevilla, M. A., Rabano, A., Gili-Manzanaro, P., Prehn, J. H. M., et al. Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer’s disease. Sci Rep. 2019;9:15437.CrossRefGoogle ScholarPubMed
Kenny, A., McArdle, H., Calero, M., Rabano, A., Madden, S. F., Adamson, K., et al. Elevated plasma microRNA-206 levels predict cognitive decline and progression to dementia from mild cognitive impairment. Biomolecules. 2019;9:734.CrossRefGoogle ScholarPubMed
Wijesinghe, P., Xi, J., Cui, J., Campbell, M., Pham, W., Matsubara, J. A. MicroRNAs in tear fluids predict underlying molecular changes associated with Alzheimer’s disease. Life Sci Alliance. 2023;6:e202201757.CrossRefGoogle ScholarPubMed
Sinha, A., Yadav, A. K., Chakraborty, S., Kabra, S. K., Lodha, R., Kumar, M., et al. Exosome-enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J Allergy Clin Immunol. 2013;132:219–22.CrossRefGoogle ScholarPubMed
Shi, M., Han, W., Loudig, O., Shah, C. D., Dobkin, J. B., Keller, S., et al. Initial development and testing of an exhaled microRNA detection strategy for lung cancer case-control discrimination. Sci Rep. 2023;13:6620.CrossRefGoogle ScholarPubMed
Raoof, R., Jimenez-Mateos, E. M., Bauer, S., Tackenberg, B., Rosenow, F., Lang, J., et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep. 2017;7:3328.CrossRefGoogle ScholarPubMed
Leidinger, P., Backes, C., Deutscher, S., Schmitt, K., Mueller, S. C., Frese, K., et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78.CrossRefGoogle ScholarPubMed
Liu, S., Zhang, F., Wang, X., Shugart, Y. Y., Zhao, Y., Li, X., et al. Diagnostic value of blood-derived microRNAs for schizophrenia: results of a meta-analysis and validation. Sci Rep. 2017;7:15328.CrossRefGoogle ScholarPubMed
Magen, I., Yacovzada, N. S., Yanowski, E., Coenen-Stass, A., Grosskreutz, J., Lu, C. H., et al. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat Neurosci. 2021;24:1534–41.CrossRefGoogle ScholarPubMed
Wang, J., Tan, L., Tan, L., Tian, Y., Ma, J., Tan, C. C., et al. Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci Rep. 2015;5:10201.CrossRefGoogle ScholarPubMed
Wang, J., Yu, J. T., Tan, L., Tian, Y., Ma, J., Tan, C. C., et al. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep. 2015;5:9522.CrossRefGoogle ScholarPubMed
Enright, N., Simonato, M., Henshall, D. C. Discovery and validation of blood microRNAs as molecular biomarkers of epilepsy – ways to close current knowledge gaps. Epilepsia Open. 2018;3:427–36.CrossRefGoogle ScholarPubMed
Brennan, G. P., Bauer, S., Engel, T., Jimenez-Mateos, E. M., Del Gallo, F., Hill, T. D. M., et al. Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiol Dis. 2020;144:105048.CrossRefGoogle ScholarPubMed
Heiskanen, M., Das Gupta, S., Mills, J. D., van Vliet, E. A., Manninen, E., Ciszek, R., et al. Discovery and validation of circulating microRNAs as biomarkers for epileptogenesis after experimental traumatic brain injury – the EPITARGET cohort. Int J Mol Sci. 2023;24:2823.CrossRefGoogle ScholarPubMed
Brindley, E., Heiland, M., Mooney, C., Diviney, M., Mamad, O., Hill, T. D. M., et al. Brain cell-specific origin of circulating microRNA biomarkers in experimental temporal lobe epilepsy. Front Mol Neurosci. 2023;16.CrossRefGoogle ScholarPubMed
Acharya, S. S., Fendler, W., Watson, J., Hamilton, A., Pan, Y., Gaudiano, E., et al. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury. Sci Transl Med. 2015;7:287ra69.CrossRefGoogle ScholarPubMed
Fendler, W., Malachowska, B., Meghani, K., Konstantinopoulos, P. A., Guha, C., Singh, V. K., et al. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci Transl Med. 2017;9:eaal2408.CrossRefGoogle ScholarPubMed
Nowicka, Z., Tomasik, B., Kozono, D., Stawiski, K., Johnson, T., Haas-Kogan, D., et al. Serum miRNA-based signature indicates radiation exposure and dose in humans: a multicenter diagnostic biomarker study. Radiother Oncol. 2023;185:109731.CrossRefGoogle ScholarPubMed
Dave, V. P., Ngo, T. A., Pernestig, A. K., Tilevik, D., Kant, K., Nguyen, T., et al. MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab Invest. 2019;99:452–69.CrossRefGoogle ScholarPubMed
Spain, E., Jimenez-Mateos, E. M., Raoof, R., El Naggar, H., Delanty, N., Forster, R. J., et al. Direct, non-amplified detection of microRNA-134 in plasma from epilepsy patients. RSC Advances. 2015;5:90071–8.CrossRefGoogle Scholar
McArdle, H., Jimenez-Mateos, E. M., Raoof, R., Carthy, E., Boyle, D., ElNaggar, H., et al. ‘TORNADO’ – Theranostic One-Step RNA Detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci Rep. 2017;7:1750.CrossRefGoogle ScholarPubMed
Witwer, K. W., Halushka, M. K. Toward the promise of microRNAs – enhancing reproducibility and rigor in microRNA research. RNA Biol. 2016;13:1103–16.CrossRefGoogle ScholarPubMed
Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22:107–26.Google ScholarPubMed
Vandereyken, K., Sifrim, A., Thienpont, B., Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24:494515.CrossRefGoogle Scholar
Kirstein, N., Dokaneheifard, S., Cingaram, P. R., Valencia, M. G., Beckedorff, F., Gomes Dos Santos, H., et al. The Integrator complex regulates microRNA abundance through RISC loading. Sci Adv. 2023;9:eadf0597.CrossRefGoogle ScholarPubMed
Lee, Y. Y., Kim, H., Kim, V. N. Sequence determinant of small RNA production by DICER. Nature. 2023;615:323–30.CrossRefGoogle ScholarPubMed
Lee, Y. Y., Lee, H., Kim, H., Kim, V. N., Roh, S. H. Structure of the human DICER-pre-miRNA complex in a dicing state. Nature. 2023;615:331–8.CrossRefGoogle Scholar
Tsujisaka, Y., Hatani, T., Okubo, C., Ito, R., Kimura, A., Narita, M., et al. Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports. 2022;17:1772–85.CrossRefGoogle ScholarPubMed
Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., et al. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell. 2015;16:699711.CrossRefGoogle ScholarPubMed
Frei, T., Cella, F., Tedeschi, F., Gutierrez, J., Stan, G. B., Khammash, M., et al. Characterization and mitigation of gene expression burden in mammalian cells. Nat Commun. 2020;11:4641.CrossRefGoogle ScholarPubMed
Hennig, T., Prusty, A. B., Kaufer, B. B., Whisnant, A. W., Lodha, M., Enders, A., et al. Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature. 2022;605:539–44.CrossRefGoogle ScholarPubMed
McDonald, J. T., Enguita, F. J., Taylor, D., Griffin, R. J., Priebe, W., Emmett, M. R., et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 2021;37:109839.CrossRefGoogle ScholarPubMed
Chandrasekaran, A. R., MacIsaac, M., Dey, P., Levchenko, O., Zhou, L., Andres, M., et al. Cellular microRNA detection with miRacles: microRNA- activated conditional looping of engineered switches. Sci Adv. 2019;5:eaau9443.CrossRefGoogle ScholarPubMed
Zhou, L., Gao, M., Fu, W., Wang, Y., Luo, D., Chang, K., et al. Three-dimensional DNA tweezers serve as modular DNA intelligent machines for detection and regulation of intracellular microRNA. Sci Adv. 2020;6:eabb0695.CrossRefGoogle ScholarPubMed
Namkung, H., Yukitake, H., Fukudome, D., Lee, B. J., Tian, M., Ursini, G., et al. The miR-124-AMPAR pathway connects polygenic risks with behavioral changes shared between schizophrenia and bipolar disorder. Neuron. 2023;111:220–35 e9.CrossRefGoogle ScholarPubMed
Nedergaard, M., Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science. 2020;370:50–6.CrossRefGoogle ScholarPubMed
Cheng, H. Y., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., et al. MicroRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54:813–29.CrossRefGoogle ScholarPubMed
Curtis, A. M., Fagundes, C. T., Yang, G., Palsson-McDermott, E. M., Wochal, P., McGettrick, A. F., et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A. 2015;112:7231–6.CrossRefGoogle ScholarPubMed
Dowling, J. K., Afzal, R., Gearing, L. J., Cervantes-Silva, M. P., Annett, S., Davis, G. M., et al. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat Commun. 2021;12:1460.CrossRefGoogle ScholarPubMed
Karoly, P. J., Rao, V. R., Gregg, N. M., Worrell, G. A., Bernard, C., Cook, M. J., et al. Cycles in epilepsy. Nat Rev Neurol. 2021;17:267–84.CrossRefGoogle ScholarPubMed
Kinser, H. E., Pincus, Z. MicroRNAs as modulators of longevity and the aging process. Hum Genet. 2020;139:291308.CrossRefGoogle ScholarPubMed
Kim, B. M., Amores, A., Kang, S., Ahn, D. H., Kim, J. H., Kim, I. C., et al. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol. 2019;3:469–78.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David C. Henshall, RCSI University of Medicine & Health Sciences, Dublin
  • Book: Fine-Tuning Life
  • Online publication: 14 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781009466400.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David C. Henshall, RCSI University of Medicine & Health Sciences, Dublin
  • Book: Fine-Tuning Life
  • Online publication: 14 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781009466400.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David C. Henshall, RCSI University of Medicine & Health Sciences, Dublin
  • Book: Fine-Tuning Life
  • Online publication: 14 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781009466400.011
Available formats
×