Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T08:04:08.154Z Has data issue: false hasContentIssue false

17 - The use of EEG in assessing acute and chronic brain damage in the newborn

from Section 3 - Diagnosis of the infant with brain injury

Published online by Cambridge University Press:  12 January 2010

David K. Stevenson
Affiliation:
Stanford University School of Medicine, California
William E. Benitz
Affiliation:
Stanford University School of Medicine, California
Philip Sunshine
Affiliation:
Stanford University School of Medicine, California
Susan R. Hintz
Affiliation:
Stanford University School of Medicine, California
Maurice L. Druzin
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

The goal of this chapter is to help the reader understand the fundamentals of neonatal electroencephalography (EEG), including the source of EEG signals and the technical aspects of a well-performed EEG. Particular attention will be paid to (1) maturational features which correlate with the infant's conceptional age, (2) abnormal findings indicative of encephalopathies of various causes, and (3) the value of the EEG in determining the prognosis for normal and abnormal neurological outcome. The role of EEG in neonatal seizures is covered more thoroughly in Chapter 43.

Value of the EEG

The EEG is a valuable tool for assessing neonatal brain function. It has unique properties compared to many other diagnostic tests of brain function. It can resolve temporal aspects of brain function more effectively than computed tomography (CT), magnetic resonance imaging (MRI), or even the bedside neurological examination. There is no other test that can so precisely discriminate between epileptic seizures and non-epileptic events in the neonate. It provides information about the severity of brain dysfunction (encephalopathy). Serial EEGs provide information about the course and effectiveness of treatment. Sometimes the EEG helps distinguish between various etiologies of encephalopathy.

Indication for EEG

An EEG in the neonate should be considered when questions arise regarding the cause of a child's abnormal neurological responses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mizrahi, EM. Pediatric electroencephalographic video monitoring. J Clin Neurophysiol 1999; 16: 100–10.CrossRefGoogle ScholarPubMed
Hayakawa, F, Okumura, A, Kato, T, et al. Determination of timing of brain injury in preterm infants with periventricular leukomalacia with serial neonatal electroencephalography. Pediatrics 1999; 104: 1077–81.CrossRefGoogle ScholarPubMed
Itakura, A, Kurauchi, O, Hayakawa, F, et al. Timing of periventricular leukomalacia using neonatal electroencephalography. Int J Gynaecol Obstet 1996; 55: 111–15.CrossRefGoogle ScholarPubMed
Marret, S, Jeannot, E, Parain, D, et al. [Positive rolandic sharp waves, periventricular ischemia and neurologic outcome. Prospective study in 66 premature infants]. Arch Fr Pediatr 1989; 46: 249–53.Google Scholar
Watanabe, K, Hayakawa, F, Okumura, A. Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev 1999; 21: 361–72.CrossRefGoogle ScholarPubMed
Bellieni, CV, Ferrari, F, Felice, C, et al. EEG in assessing hydroxycobalamin therapy in neonatal methylmalonic aciduria with homocystinuria. Biol Neonate 2000; 78: 327–30.CrossRefGoogle ScholarPubMed
Brazier, MAB. Electrical Activity of the Nervous System, 4th edn. Baltimore, MD: Williams and Wilkins, 1977.Google Scholar
Marret, S, Parain, D, Menard, JF, et al. Prognostic value of neonatal electroencephalography in premature newborns less than 33 weeks of gestational age. Electroencephalogr Clin Neurophysiol 1997; 102: 178–85.CrossRefGoogle ScholarPubMed
Chung, HJ, Clancy, RR. Significance of positive temporal sharp waves in the neonatal electroencephalogram. Electroencephalogr Clin Neurophysiol 1991; 79: 256–63.CrossRefGoogle ScholarPubMed
Marret, S, Parain, D, Jeannot, E, et al. Positive rolandic sharp waves in the EEG of the premature newborn: a five year prospective study. Arch Dis Child 1992; 67: 948–51.CrossRefGoogle ScholarPubMed
Novotny, EJ, Tharp, BR, Coen, RW, et al. Positive rolandic sharp waves in the EEG of the premature infant. Neurology 1987; 37: 1481–6.CrossRefGoogle ScholarPubMed
Cukier, F, Andre, M, Monod, N, et al. [Contribution of EEG to the diagnosis of intraventricular hemorrhages in the premature infant]. Rev Electroencephalogr Neurophysiol Clin 1972; 2: 318–22.CrossRefGoogle Scholar
Levy, SR. Brainstem auditory potentials in pediatrics. In Chiappa, KH, ed., Evoked Potentials in Clinical Medicine, 3rd edn. Philadelphia, PA: Lippincott-Raven, 1997: 269–78.Google Scholar
Levy, SR. Somatosensory evoked potentials in pediatrics. In Chiappa, KH, ed., Evoked Potentials in Clinical Medicine, 3rd edn. Philadelphia, PA: Lippincott-Raven, 1997: 453–70.Google Scholar
Jasper, HH. The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 1958; 10: 371–5.Google Scholar
Nuwer, MR. Recording electrode site nomenclature. J Clin Neurophysiol 1987; 4: 121–33.CrossRefGoogle ScholarPubMed
Hrachovy, RA, Mizrahi, EM, Kellaway, P.Electroencephalography of the newborn. In Daly, DD, Pedley, TA, eds., Current Practice of Clinical Electroencephalography, 2nd edn. New York, NY: Raven Press, 1990: 201–42.Google Scholar
Guideline two: minimum technical standards for pediatric electroencephalography. Am J Electroneurodiagnostic Technol 2006; 46: 205–10.
Ramelli, GP, Donati, F, Bianchetti, M, et al. Apnoeic attacks as an isolated manifestation of epileptic seizures in infants. Eur J Paediatr Neurol 1998; 2: 187–91.CrossRefGoogle ScholarPubMed
Watanabe, K, Hara, K, Miyazaki, S, et al. Apneic seizures in the newborn. Am J Dis Child 1982; 136: 980–4.Google ScholarPubMed
Hosain, S, Vega-Talbott, M, Solomon, G, et al. Apneic seizures in infants: role of continuous EEG monitoring. Clin Electroencephalogr 2003; 34: 197–200.CrossRefGoogle ScholarPubMed
Tramonte, JJ, Goodkin, HP. Temporal lobe hemorrhage in the full-term neonate presenting as apneic seizures. J Perinatol 2004; 24: 726–9.CrossRefGoogle ScholarPubMed
Hahn, JS, Tharp, B.Neonatal and pediatric electroencephalography. In Aminoff, M, ed., Electrodiagnosis in Clinical Neurology, 3rd edn. Edinburgh: Churchill Livingstone, 1999: 81–127.Google Scholar
Sing, K, Erickson, T, Amitai, Y, et al. Chloral hydrate toxicity from oral and intravenous administration. J Toxicol Clin Toxicol 1996; 34: 101–6.CrossRefGoogle ScholarPubMed
Pershad, J, Palmisano, P, Nichols, M. Chloral hydrate: the good and the bad. Pediatr Emerg Care 1999; 15: 432–5.CrossRefGoogle ScholarPubMed
Tharp, BR. Electrophysiological brain maturation in premature infants: an historical perspective. J Clin Neurophysiol 1990; 7: 302–14.CrossRefGoogle Scholar
Scher, MS, Waisanen, H, Loparo, K, et al. Prediction of neonatal state and maturational change using dimensional analysis. J Clin Neurophysiol 2005; 22: 159–65.Google ScholarPubMed
Watemberg, N, Tziperman, B, Dabby, R, et al. Adding video recording increases the diagnostic yield of routine electroencephalograms in children with frequent paroxysmal events. Epilepsia 2005; 46: 716–19.CrossRefGoogle ScholarPubMed
Wical, BS. Neonatal seizures and electrographic analysis: evaluation and outcomes. Pediatr Neurol 1994; 10: 271–5.CrossRefGoogle ScholarPubMed
DoolingEC, Chi J, Gilles FH EC, Chi J, Gilles FH. Telencephalic development. In Gilles, FH, Leviton, A, Dooling, EC, eds., The Developing Human Brain: Growth and Epidemiologic Neuropathology. Boston, MA: Wright-PSG, 1983: 117–82.Google Scholar
McArdle, CB, Richardson, CJ, Nicholas, DA, et al. Developmental features of the neonatal brain: MR imaging. Part I. Gray–white matter differentiation and myelination. Radiology 1987; 162: 223–9.Google ScholarPubMed
Scher, MS, Martin, JG, Steppe, DA, et al. Comparative estimates of neonatal gestational maturity by electrographic and fetal ultrasonographic criteria. Pediatr Neurol 1994; 11: 214–18.CrossRefGoogle ScholarPubMed
Monod, N, Tharp, B. [The normal EEG of the neonate (author's transl)]. Rev Electroencephalogr Neurophysiol Clin 1977; 7: 302–15.CrossRefGoogle Scholar
Selton, D, Andre, M, Hascoet, JM. Normal EEG in very premature infants: reference criteria. Clin Neurophysiol 2000; 111: 2116–24.CrossRefGoogle ScholarPubMed
Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol 1985; 2: 89–103.CrossRefGoogle ScholarPubMed
Sweden, B, Koenderink, M, Windau, G, et al. Long-term EEG monitoring in the early premature: developmental and chronobiological aspects. Electroencephalogr Clin Neurophysiol 1991; 79: 94–100.CrossRefGoogle ScholarPubMed
Biagioni, E, Bartalena, L, Biver, P, et al. Electroencephalographic dysmaturity in preterm infants: a prognostic tool in the early postnatal period. Neuropediatrics 1996; 27: 311–16.CrossRefGoogle ScholarPubMed
Biagioni, E, Bartalena, L, Boldrini, A, et al. Constantly discontinuous EEG patterns in full-term neonates with hypoxic–ischaemic encephalopathy. Clinical Neurophysiology 1999; 110: 1510–15.CrossRefGoogle ScholarPubMed
Hahn, JS, Tharp, BR. Winner of the Brazier Award: the dysmature EEG pattern in infants with bronchopulmonary dysplasia and its prognostic implications. Electroencephalogr Clin Neurophysiol 1990; 76: 106–13.CrossRefGoogle ScholarPubMed
Hayakawa, F, Okumura, A, Kato, T, et al. Disorganized patterns: chronic-stage EEG abnormality of the late neonatal period following severely depressed EEG activities in early preterm infants. Neuropediatrics 1997; 28: 272–5.CrossRefGoogle ScholarPubMed
Scher, MS, Steppe, DA, Banks, DL, et al. Maturational trends of EEG-sleep measures in the healthy preterm neonate. Pediatr Neurol 1995; 12: 314–22.CrossRefGoogle ScholarPubMed
Wertheim, D, Mercuri, E, Faundez, JC, et al. Prognostic value of continuous electroencephalographic recording in full term infants with hypoxic ischaemic encephalopathy. Arch Dis Child 1994; 71: F97–102.CrossRefGoogle ScholarPubMed
Lombroso, CT. Quantified electrographic scales on 10 pre-term healthy newborns followed up to 40–43 weeks of conceptional age by serial polygraphic recordings. Electroencephalogr Clin Neurophysiol 1979; 46: 460–74.CrossRefGoogle ScholarPubMed
Oliveira, AJ, Nunes, ML, Haertel, LM, et al. Duration of rhythmic EEG patterns in neonates: new evidence for clinical and prognostic significance of brief rhythmic discharges. Clin Neurophysiol 2000; 111: 1646–53.CrossRefGoogle ScholarPubMed
Shewmon, DA. What is a neonatal seizure? Problems in definition and quantification for investigative and clinical purposes. J Clin Neurophysiol 1990; 7: 315–68.CrossRefGoogle ScholarPubMed
Nunes, ML, Da Costa, JC, Moura-Ribeiro, MV. Polysomnographic quantification of bioelectrical maturation in preterm and fullterm newborns at matched conceptional ages. Electroencephalogr Clin Neurophysiol 1997; 102: 186–91.CrossRefGoogle ScholarPubMed
Hughes, JR, Miller, JK, Fino, JJ, et al. The sharp theta rhythm on the occipital areas of prematures (STOP): a newly described waveform. Clin Electroencephalogr 1990; 21: 77–87.CrossRefGoogle ScholarPubMed
Kuremoto, K, Hayakawa, F, Watanabe, K. [Rhythmic alpha/theta bursts in the electroencephalogram of early premature infants. 1. The features in normal early premature infants]. No To Hattatsu 1997; 29: 239–43.Google Scholar
Kuremoto, K, Hayakawa, F, Watanabe, K. [Rhythmic alpha/theta bursts in the electroencephalogram of early premature infants. 2. Correlation with background EEG activity]. No To Hattatsu 1997; 29: 244–8.Google Scholar
Zaret, BS, Guterman, B, Weig, S. Circumscribed midline EEG activity in neurologically normal neonates. Clin Electroencephalogr 1991; 22: 13–22.CrossRefGoogle ScholarPubMed
Tharp, BR, Cukier, F, Monod, N. The prognostic value of the electroencephalogram in premature infants. Electroencephalogr Clin Neurophysiol 1981; 51: 219–36.CrossRefGoogle ScholarPubMed
Holmes, GL, Lombroso, CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol 1993; 10: 323–52.CrossRefGoogle ScholarPubMed
Pressler, RM, Boylan, GB, Morton, M, et al. Early serial EEG in hypoxic ischaemic encephalopathy. Clin Neurophysiol 2001; 112: 31–7.CrossRefGoogle ScholarPubMed
Zeinstra, E, Fock, JM, Begeer, JH, et al. The prognostic value of serial EEG recordings following acute neonatal asphyxia in full-term infants. Eur J Paediatr Neurol 2001; 5: 155–60.CrossRefGoogle ScholarPubMed
Clancy, RR, Chung, HJ. EEG changes during recovery from acute severe neonatal citrullinemia. Electroencephalogr Clin Neurophysiol 1991; 78: 222–7.CrossRefGoogle ScholarPubMed
Aso, K, Abdab-Barmada, M, Scher, MS. EEG and the neuropathology in premature neonates with intraventricular hemorrhage. J Clin Neurophysiol 1993; 10: 304–13.CrossRefGoogle ScholarPubMed
Graziani, LJ, Streletz, LJ, Baumgart, S, et al. Predictive value of neonatal electroencephalograms before and during extracorporeal membrane oxygenation. J Pediatr 1994; 125: 969–75.CrossRefGoogle ScholarPubMed
Okumura, A, Hayakawa, F, Kato, T, et al. Positive rolandic sharp waves in preterm infants with periventricular leukomalacia: their relation to background electroencephalographic abnormalities. Neuropediatrics 1999; 30: 278–82.CrossRefGoogle ScholarPubMed
Tich, SN, d'Allest, AM, Villepin, AT, et al. Pathological features of neonatal EEG in preterm babies born before 30 weeks of gestational age. Neurophysiol Clin 2007; 37: 325–70.CrossRefGoogle Scholar
Kumar, P, Gupta, R, Shankaran, S, et al. EEG abnormalities in survivors of neonatal ECMO: its role as a predictor of neurodevelopmental outcome. Am J Perinatol 1999; 16: 245–50.CrossRefGoogle ScholarPubMed
Trittenwein, G, Plenk, S, Mach, E, et al. Quantitative electroencephalography values of neonates during and after venoarterial extracorporeal membrane oxygenation and permanent ligation of right common carotid artery. Artif Organs 2006; 30: 447–51.CrossRefGoogle ScholarPubMed
Toet, M, Meij, W, Vries, L, et al. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 2002; 109: 772–9.CrossRefGoogle ScholarPubMed
Osredkar, D, Toet, M, Rooij, L, et al. Sleep–wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic–ischemic encephalopathy. Pediatrics 2005; 115: 327–32.CrossRefGoogle ScholarPubMed
Kuhle, S, Klebermass, K, Olischar, M, et al. Sleep–wake cycles in preterm infants below 30 weeks of gestational age: preliminary results of a prospective amplitude-integrated EEG study. Wiener Klin Wochenschr 2001; 113: 219–23.Google ScholarPubMed
Hellstrom-Westas, L, Vries, L, Rosen, I. An Atlas of Amplitude-Integrated EEGs in the Newborn. New York, NY: Parthenon, 2003.Google Scholar
Bjerre, I, Hellstrom-Westas, L, Rosen, I, et al. Monitoring of cerebral function after severe asphyxia in infancy. Arch Dis Child 1983; 58: 997–1002.CrossRefGoogle ScholarPubMed
Clancy, R. Prolonged electroencephalogram monitoring for seizures and their treatment. Clin Perinatol 2006; 33: 649–65.CrossRefGoogle ScholarPubMed
Olischar, M, Klebermass, K, Kuhle, S, et al. Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. Childs Nerv Syst 2004; 20: 41–5.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L, Klette, H, Thorngren-Jerneck, K, et al. Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics 2001; 32: 319–24.CrossRefGoogle ScholarPubMed
Vries, LS, Toet, MC. Amplitude integrated electroencephalography in the full-term newborn. Clin Perinatol 2006; 33: 619–32, vi.CrossRefGoogle ScholarPubMed
Shalak, L, Laptook, A, Velaphi, S, et al. Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 2003; 111: 351–7.CrossRefGoogle ScholarPubMed
Gluckman, P, Wyatt, J, Azzopardi, D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005; 365: 663–70.CrossRefGoogle ScholarPubMed
Spitzmiller, R, Phillips, T, Meinzen-Derr, J, et al. Amplitude-Integrated EEG is useful in predicting neurodevelopmental outcome in full-term infants with hypoxic–ischemic encephalopathy: a meta-analysis. J Child Neurol 2007; 22: 1069–78.CrossRefGoogle ScholarPubMed
Bode, H, Bubl, R. [EEG changes in type I and type II lissencephaly]. Klin Padiatr 1994; 206: 12–17.CrossRefGoogle Scholar
Worle, H, Keimer, R, Kohler, B. [Miller–Dieker syndrome (type I lissencephaly) with specific EEG changes]. Monatsschr Kinderheilkd 1990; 138: 615–18.Google Scholar
Ohtsuka, Y, Oka, E, Terasaki, T, et al. Aicardi syndrome: a longitudinal clinical and electroencephalographic study. Epilepsia 1993; 34: 627–34.CrossRefGoogle ScholarPubMed
Shah, KN, Rajadhyaksha, S, Shah, VS, et al. EEG recognition of holoprosencephaly and Aicardi syndrome. Indian J Pediatr 1992; 59: 103–8.CrossRefGoogle ScholarPubMed
Tharp, BR. Unique EEG pattern (comb-like rhythm) in neonatal maple syrup urine disease. Pediatr Neurol 1992; 8: 65–8.CrossRefGoogle Scholar
Nabbout, R, Soufflet, C, Plouin, P, et al. Pyridoxine dependent epilepsy: a suggestive electroclinical pattern. Arch Dis Child Fetal Neonatal Ed 1999; 81: F125–9.CrossRefGoogle ScholarPubMed
Baxter, P. Pyridoxine dependent epilepsy: a suggestive electroclinical pattern. Arch Dis Child Fetal Neonatal Ed 2000; 83: F163.CrossRefGoogle ScholarPubMed
Markand, ON, Garg, BP, Brandt, IK. Nonketotic hyperglycinemia: electroencephalographic and evoked potential abnormalities. Neurology 1982; 32: 151–6.CrossRefGoogle ScholarPubMed
Scher, MS, Bergman, I, Ahdab-Barmada, M, et al. Neurophysiological and anatomical correlations in neonatal nonketotic hyperglycinemia. Neuropediatrics 1986; 17: 137–43.CrossRefGoogle ScholarPubMed
Seppalainen, AM, Simila, S. Electroencephalographic findings in three patients with nonketotic hyperglycinemia. Epilepsia 1971; 12: 101–7.CrossRefGoogle ScholarPubMed
Brunquell, P, Tezcan, K, DiMario, FJ. Electroencephalographic findings in ornithine transcarbamylase deficiency. J Child Neurol 1999; 14: 533–6.CrossRefGoogle ScholarPubMed
Clancy, RR, Tharp, BR, Enzman, D. EEG in premature infants with intraventricular hemorrhage. Neurology 1984; 34: 583–90.CrossRefGoogle ScholarPubMed
Watanabe, K, Hakamada, S, Kuroyanagi, M, et al. Electroencephalographic study of intraventricular hemorrhage in the preterm newborn. Neuropediatrics 1983; 14: 225–30.CrossRefGoogle ScholarPubMed
Bor, M, Dijk, JG, Bel, F, et al. Electrical brain activity in preterm infants at risk for intracranial hemorrhage. Acta Paediatr 1994; 83: 588–95.CrossRefGoogle ScholarPubMed
Hughes, JR, Guerra, R. The use of the EEG to predict outcome in premature infants with positive sharp waves. Clin Electroencephalogr 1994; 25: 127–35.CrossRefGoogle ScholarPubMed
Baud, O, d'Allest, AM, Lacaze-Masmonteil, T, et al. The early diagnosis of periventricular leukomalacia in premature infants with positive rolandic sharp waves on serial electroencephalography. J Pediatr 1998; 132: 813–17.CrossRefGoogle ScholarPubMed
Chequer, RS, Tharp, BR, Dreimane, D, et al. Prognostic value of EEG in neonatal meningitis: retrospective study of 29 infants. Pediatr Neurol 1992; 8: 417–22.CrossRefGoogle ScholarPubMed
Koelfen, W, Freund, M, Varnholt, V. Neonatal stroke involving the middle cerebral artery in term infants: clinical presentation, EEG and imaging studies, and outcome. Dev Med Child Neurol 1995; 37: 204–12.CrossRefGoogle ScholarPubMed
Sreenan, C, Bhargava, R, Robertson, CM. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr 2000; 137: 351–5.CrossRefGoogle ScholarPubMed
Lai, CW, Gragasin, ME. Electroencephalography in herpes simplex encephalitis. J Clin Neurophysiol 1988; 5: 87–103.CrossRefGoogle ScholarPubMed
Sainio, K, Granstrom, ML, Pettay, O, et al. EEG in neonatal herpes simplex encephalitis. Electroencephalogr Clin Neurophysiol 1983; 56: 556–61.CrossRefGoogle ScholarPubMed
Mikati, MA, Feraru, E, Krishnamoorthy, K, et al. Neonatal herpes simplex meningoencephalitis: EEG investigations and clinical correlates. Neurology 1990; 40: 1433–7.CrossRefGoogle ScholarPubMed
Shian, WJ, Chi, CS. Magnetic resonance imaging of herpes simplex encephalitis. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1996; 37: 22–6.Google ScholarPubMed
Haddad, J, Messer, J, Gut, JP, et al. Neonatal echovirus encephalitis with white matter necrosis. Neuropediatrics 1990; 21: 215–17.CrossRefGoogle ScholarPubMed
Kohyama, J, Suzuki, N, Kajiwara, M, et al. A case of chronic epileptic encephalopathy of neonatal onset: a probable concern of human cytomegalovirus. Brain Dev 1993; 15: 448–52.CrossRefGoogle ScholarPubMed
Berg, U, Bohlin, AB, Malmborg, AS. Neonatal meningitis caused by Haemophilus influenzae type c. Scand J Infect Dis 1981; 13: 155–7.CrossRefGoogle ScholarPubMed
Watanabe, K, Hara, K, Hakamada, S, et al. The prognostic value of EEG in neonatal meningitis. Clin Electroencephalogr 1983; 14: 67–77.CrossRefGoogle ScholarPubMed
Scher, MS, Richardson, GA, Day, NL. Effects of prenatal cocaine/crack and other drug exposure on electroencephalographic sleep studies at birth and one year. Pediatrics 2000; 105: 39–48.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×