Published online by Cambridge University Press: 07 May 2010
The aim of this chapter is to provide a comprehensive understanding of trapped-particle near-field scanning optical microscopy (NSOM). The principle of optical trapping and laser tweezers is briefly explained in Section 6.1. Section 6.2 summarises the motivation of using a laser-trapped microsphere as a probe in NSOM. The basic principle of trapped-particle NSOM is described in Section 6.3. Two major aspects of this technique, laser trapping performance and near-field Mie scattering of dielectric and metallic particles, are discussed in Sections 6.4 and 6.5, respectively. Experimental results on image formation in trapped-particle NSOM are described in Section 6.6. In Section 6.7, some prospects for the future development of this technique are put forward.
Optical trapping and laser tweezers
Photons carry momentum. When the change in momentum occurs upon reflection, refraction, transmission and absorption of a light beam, the rate of change of momentum results in a force being exerted on an object. The origin of this force can be understood from Newton's laws. A light ray that is refracted through a dielectric particle changes its direction due to the refraction process. Since light carries momentum, a change in light direction implies that there must exist a force associated with that change. The resulting force, manifested as a recoil action due to the momentum redirection, draws mesoscopic particles toward the highest photon flux in the focal region. This recoil is unnoticeable for refraction by macroobjects such as lenses, but it has a substantial and measurable influence on mesoscopic refractive objects such as small dielectric particles.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.