Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T14:18:36.631Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  16 November 2020

Brian L. N. Kennett
Affiliation:
Australian National University, Canberra
Andreas Fichtner
Affiliation:
ETH Zurich
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Exploiting Seismic Waveforms
Correlation, Heterogeneity and Inversion
, pp. 462 - 482
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abers, G.A., 2000. Hydrated subducted crust at 100–250 km depth, Earth Planet. Sci. Lett., 176, 323330.CrossRefGoogle Scholar
Abers, G.A., Plank, T., Hacker, B.R., 2003. The wet Nicaraguan slab, Geophys. Res. Lett., 30, 1098.CrossRefGoogle Scholar
Afanasiev, M.V., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D.A., Knepley, M.G., Fichtner, A., 2019. Modular and flexible spectral-element waveform modelling in two and three dimensions, Geophys. J. Int., 216, 16751692.CrossRefGoogle Scholar
Alterman, Z., Lowenthal, D., 1972. Computer generated seismograms, Methods in Computational Physics, 12, 35–164, ed. Bolt B.A., Academic Press, New York.Google Scholar
Aki, K., 1957. Space and time spectra of stationary stochastic waves with special reference to microtremors, Bull. Earthq. Res. Inst., 35, 415456.Google Scholar
Aki, K., Lee, W.H.K., 1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes – 1. A homogeneous initial model, J. Geophys. Res., 81, 43814399.CrossRefGoogle Scholar
Aki K., Richards P.G.,2002. Quantitative Seismology, 2nd edition, University Science Books, Sausalito.Google Scholar
Aki, K., Chouet, B., 1975. Origin of coda waves: source, attenuation and scattering effects, J. Geophys. Res., 80, 33223342.CrossRefGoogle Scholar
An, M., 2012. A simple method for determining the spatial resolution of a general inverse problem, Geophys. J. Int., 191, 849864.Google Scholar
Antolik, M., Gu, Yu-J., Ekström, G., Dziewonski, A.M., 2003. J362D28: a new joint model of compressional and shear velocity in the Earth’s mantle, Geophys. J. Int., 153, 443466.CrossRefGoogle Scholar
Artemieva, I., 2011. The Lithosphere: An Interdisciplinary Approach, Cambridge University Press, Cambridge.Google Scholar
Asten, M.W., 2006. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods, Geophysics, 71, V153–V162.CrossRefGoogle Scholar
Astiz, L., Earle, P., Shearer, P., 1996. Global stacking of broadband seismograms. Seism. Res. Lett., 67(4), 818.CrossRefGoogle Scholar
Backus, G.E., 1962. Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67, 44274440.CrossRefGoogle Scholar
Backus, G.E., Gilbert, F., 1968. The resolving power of gross Earth data, Geophys. J. Roy. Astr. Soc., 16, 169205.CrossRefGoogle Scholar
Baeten, G., Ziolowski, A., 1990. The Vibroseis Source, Elsevier, Amsterdam.Google Scholar
Bakulin, A., Calvert, R., 2006, The virtual source method: Theory and case study, Geophysics, 71, SI139SI150.CrossRefGoogle Scholar
Bamberger, A., Chavent, G., Lailly, P., 1977. Une application de la théorie du contrôle à un problème inverse sismique, Ann. Geophys., 33, 183200.Google Scholar
Bataille, K., Wu, R.S., Flatté, S.M., 1990. Inhomogeneities near the core–mantle boundary evidenced from scattered waves: A review, Pure Appl. Geophys., 132, 151173.CrossRefGoogle Scholar
Becker, T.W., 2012. On recent seismic tomography for the western United States, Geochem. Geophys. Geosys., 13, doi:10.1029/2011GC003977.4.CrossRefGoogle Scholar
BenMenahem, A., Singh, S.J., 1981. Seismic Waves and Sources, Springer Verlag, New York.CrossRefGoogle Scholar
Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260.CrossRefGoogle Scholar
Berkhout, A.J., 1983. Seismic Migration: Imaging of Acoustic Energy by Wavefield Extrapolation, Elsevier, Amsterdam.Google Scholar
Berkhout, A.J., 1997. Pushing the limits of seismic imaging, Part I: Prestack migration in terms of double dynamic focusing, Geophysics, 62, 937954.CrossRefGoogle Scholar
Bernauer, M., Fichtner, A., Igel, H., 2014. Optimal observables for multi-parameter seismic tomography, Geophys. J. Int., 198, 12411254.CrossRefGoogle Scholar
Betancourt, M., 2017. A conceptual introduction to Hamiltonian Monte Carlo, ArXiv, arXiv:1701.02434 [stat.ME].Google Scholar
Bijwaard, H., Spakman, W., Engdahl, E.R., 1998. Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103, 30 055–30 078.CrossRefGoogle Scholar
Biswas, R., Sen, M., 2017. 2D full-waveform inversion and uncertainty estimation using the reversible jump Hamiltonian Monte Carlo, SEG 2017 Expanded Abstracts, 1280–1285.CrossRefGoogle Scholar
Blom, N., Boehm, C., Fichtner, A., 2017. Synthetic inversions for density using seismic and gravity data, Geophys. J. Int., 209, 12041220.CrossRefGoogle Scholar
Blom, N., Gokhberg, A., Fichtner, A., 2020. Seismic waveform inversion of the Central and Eastern Mediterranean upper mantle, Solid Earth, 11, 669690.CrossRefGoogle Scholar
Boehm, C., Hanzich, M., de la Puente, J., Fichtner, A., 2016. Wavefield compression for adjoint methods in full-waveform inversion, Geophysics, 81, R385–R397.CrossRefGoogle Scholar
Boehm, C., Korta, N., Vinard, N., Balic, I., Fichtner, A., 2018. Time-domain spectral-element ltrasound waveform tomography using a stochastic quasi-Newton method, Medical Imaging 2018, Ultrasonic Imaging and Tomography 10580, doi:10.1117/12.2293299.CrossRefGoogle Scholar
Bolton, H., Masters, G., 2001. Travel times of P and S from the global digital seismic networks: Implications for the relative variation of P and S velocity in the mantle, J. Geophys. Res., 106, 13 527–13 540.Google Scholar
Boore, D.M., 1970. Love waves in nonuniform waveguides: Finite difference calculations, J. Geophys. Res., 75, 15121527.CrossRefGoogle Scholar
Bottou, L., 2010. Large-scale machine learning with stochastic gradient descent, COMPSTAT 2010, 177186.Google Scholar
Boué, P., Poli, P., Campillo, M., Pedersen, H., Briand, X., Roux, P., 2013. Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth, Geophys. J. Int., 194, 844848.CrossRefGoogle Scholar
Boué, P., Poli, P., Campillo, M., Roux, P., 2014. Reverberations, coda waves and ambient noise: Correlations at the global scale and retrieval of the deep phases, Earth Planet. Sci. Lett., 391, 137145.CrossRefGoogle Scholar
Bowden, D.C., Tsai, V.C., Lin, F.-C., 2015. Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA, Geophys. Res. Lett., 42, 13601367.CrossRefGoogle Scholar
Bozdağ, E., Trampert, J., Tromp, J., 2011. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements, Geophys. J. Int., 185, 845-870.CrossRefGoogle Scholar
Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., Pugmire, D., 2016. Global adjoint tomography: first-generation model, Geophys. J. Int., 207, 17391766.CrossRefGoogle Scholar
Brittan, J., Jones, I., 2019. FWI evolution – from a monolith to a toolkit, The Leading Edge, 38, 178184.Google Scholar
Brossier, R., Operto, S., Virieux, J., 2009. Robust elastic frequency-domain full waveform inversion using the L1 norm, Geophys. Res. Lett., 36, L20319.CrossRefGoogle Scholar
Broyden, C.G., 1970. The convergence of a class of double-rank minimization algorithms, J. Inst. Math. Appl., 6, 7690.CrossRefGoogle Scholar
Bui-Tanh, T., Ghattas, O., Martin, J., Stadler, G., 2003. A computational framework for infinite-dimensional Bayesian inverse problems part I: The linearized case, with application to global seismic inversion, SIAM J. Sci. Comp., 35, A2494–A2523.Google Scholar
Bungum, H., Husebye, E.S., 1971. Errors in time delay measurements, Pure Appl. Geophys., 91, 5670.CrossRefGoogle Scholar
Bunks, C., Saleck, F.M., Zaleski, S., Chavent, G., 1995. Multiscale seismic waveform inversion, Geophysics, 69, 14571473.CrossRefGoogle Scholar
Burgos, G., Montagner, J.-P., Beucler, E., Capdeville, Y., Mocquet, A., Drilleau, M., 2014. Oceanic lithosphere/asthenosphere boundary from surface wave dispersion data, J. Geophys. Res. Solid Earth, 119, 10791093.CrossRefGoogle Scholar
Byrd, R., Chin, G., Neveitt, W., Nocedal, J., 2011. On the use of stochastic Hessian information in optimization methods for machine learning, SIAM J. Opt., 21, 977995.CrossRefGoogle Scholar
Cagniard, L., 1939. Réflexion et Réfraction des Ondes Séismiques Progressives, Gauthier-Villars, Paris.Google Scholar
Campillo, M., Paul, A., 2003. Long-range correlations in the diffuse seismic coda, Science, 299, 547549.Google Scholar
Cao, S.-H., Kennett, B.L.N., 1989. Reflection seismograms in a 3-D elastic model: an isochronal approach, Geophys. J. Int., 99, 6380.Google Scholar
Capdeville, Y., Gung, Y., Romanowicz, B., 2005. Towards global Earth tomography using the spectral element method: A technique based on source stacking Geophys. J. Int., 162, 541554.Google Scholar
Capdeville, Y., Marigo, J.-J., 2013. A non-periodic two-scale asymptotic method to take account of rough topographies for 2-D elastic wave propagation, Geophys. J. Int., 192, 163189.CrossRefGoogle Scholar
Cerjan, C., Kosloff, D., Kosloff, R., Reshef, M., 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705708.Google Scholar
Červený, V., Popov, M., Pšenčík, I., 1982. Computation of wave fields in inhomogeneous media – Gaussian beam approach, Geophys. J. Int., 70, 109128.CrossRefGoogle Scholar
Chapman, C.H., Drummond, R., 1982. Body wave seismograms in inhomogeneous media using Maslov asymptotic theory, Bull. Seism. Soc. Am., 72, S277–S317.Google Scholar
Chapman, C.H., 2004. Fundamentals of Seismic Wave Propagation, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Chen, M., Tromp, J., Helmberger, D.V., Kanamori, H., 2007. Waveform modelling of the slab beneath Japan. J. Geophys. Res.. 112, B02305.CrossRefGoogle Scholar
Chen, P., Zhao, L., Jordan, T.H., 2007. Full 3D tomography for the crustal structure of the Los Angeles region, Bull. Seis. Soc. Am., 97, 10941120.CrossRefGoogle Scholar
Chen, Y., Saygin, E., 2020. Empirical Green’s function retrieval using cross-correlation of noise correlations (C2) J. Geophys. Res. Solid Earth, 125, e2019JB01826.Google Scholar
Chernov, L.A., 1960. Wave Propagation in a Random Medium, (Engl. trans. by R.A. Silverman), McGraw-Hill, New York.CrossRefGoogle Scholar
Christie, P.F., Hughes, V., Kennett, B.L.N., 1983. Velocity filtering of seismic reflection data, First Break, 1(3), 924.CrossRefGoogle Scholar
Claerbout, J., 1968. Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33, 264269.CrossRefGoogle Scholar
Clayton, R.W., Stolt, R.H., 1981. A Born-WKBJ inversion method for acoustic reflection data, Geophysics, 46, 15591567.CrossRefGoogle Scholar
Clayton, R.W., 2020. Imaging the subsurface with ambient noise autocorrelations, Seismol. Res. Lett., 91, 16.CrossRefGoogle Scholar
Cleary, J.R., Haddon, R.A.W, 1972. Seismic wave scattering near the core-mantle boundary: A new interpretation of precursors to PKP, Nature, 240, 549551.Google Scholar
Cowles, M.K., Carlin, B.P., 1996. Markov chain Monte Carlo convergence diagnostics: A comparative review, J. Am. Stat. Ass., 91, 883904.CrossRefGoogle Scholar
Creutz, M., 1988. Global Monte Carlo algorithms for many-fermion systems, Phys. Rev. D, 38, 1228-1238.Google Scholar
Cupillard, P., Capdeville, Y., 2018. Non-periodic homogenization of 3-D elastic media for the seismic wave equation, Geophys. J. Int., 213, 9831001.CrossRefGoogle Scholar
da Costa Filho, C.A., Ravasi, M., Curtis, A., Meles, G.A., 2014, Elastodynamic Green’s function retrieval through single-sided Marchenko inverse scattering. Phys. Rev. E, 90, 063201.Google Scholar
Dahlen, F.A., Tromp, J., 1998. Theoretical Global Seismology, Princeton University Press, Princeton.Google Scholar
Dahlen, F.A., Hung, S.-H., Nolet, G., 2000. Fréchet kernels for finite-frequency traveltimes – I. Theory, Geophys. J. Int., 141, 157174.CrossRefGoogle Scholar
Dainty, A.M., Toksöz, M.N., Anderson, K.R., Pines, P.J., Nakamura, Y., Latham, G., 1974. Seismic scattering and shallow structure of the Moon in Oceanus Procellarum, Moon, 91, 1129.CrossRefGoogle Scholar
Dainty, A.M., 1990. Studies of coda using array and three-component processing. Pure Appl. Geophys., 132, 221244.Google Scholar
Dainty, A.M., Toksöz, M.N., 1990. Array analysis of seismic scattering, Bull. Seism. Soc. Am., 80, 22422260.CrossRefGoogle Scholar
Dalton, C.A., Ekström, G., Dziewonski, A.M., 2008. The global attenuation structure of the upper mantle, J. Geophys. Res., 113, doi:10.1029/2007JB005429.Google Scholar
Deal, M.M., Nolet, G., 1996. Nullspace shuttles, Geophys. J. Int., 124, 372380.CrossRefGoogle Scholar
Debayle, E., Kennett, B., Priestley, K., 2005. Global azimuthal seismic anisotropy: the unique plate-motion deformation of Australia, Nature, 433, 509512.CrossRefGoogle ScholarPubMed
de Hoop, A.T., 1958. Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, D.Sc thesis, Technische Hogeschool Delft.Google Scholar
Doornbos, D.J., Vlaar, N.J., 1973. Regions of seismic wave scattering in the Earth’s mantle and precursors to PKP, Nature Phys. Sci., 243, 5861.CrossRefGoogle Scholar
Doornbos, D.J., 1974. Seismic wave scattering near caustics: observation of PKKP precursors, Nature, 274, 352353.CrossRefGoogle Scholar
Doornbos, D.J., 1976. Characteristics of lower mantle heterogeneities from scattered waves, Geophys. J. R. Astr. Soc., 44, 447470.CrossRefGoogle Scholar
Draganov, D., Wapenaar, K., Mulder, W., Singer, J., Verdel, A., 2007. Retrieval of reflections from seismic background-noise measurements, Geophys. Res. Lett., 34, L04305.CrossRefGoogle Scholar
Dziewonski, A.M., Hales, A.L., Lapwood, E.R., 1975. Parametrically simple Earth models consistent with geophysical data, Phys. Earth Planet. Int., 10, 1248.Google Scholar
Dziewonski, A.M., Hager, B.H., O’Connell, R.J., 1977. Large-scale heterogeneities in the lower mantle, J. Geophys. Res., 82, 239255.CrossRefGoogle Scholar
Dziewoński, A.M., Anderson, D.L. 1981. Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297356.Google Scholar
Dziewoński, A.M., Woodhouse, J.H., 1987. Global images of the Earth’s interior, Science 236, 3748.CrossRefGoogle ScholarPubMed
Ekström, G., Abers, G.A., Webb, S.C., 2009. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation, Geophys. Res. Lett., 36, L18301.CrossRefGoogle Scholar
Ekström, G., 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s, Geophys. J. Int., 187, 16681686.CrossRefGoogle Scholar
Engdahl, E.R., van der Hilst, R.D., Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88, 722743.Google Scholar
Ermert, L., Villaseñor, A., Fichtner, A., 2016. Cross-correlation imaging of ambient noise sources. Geophys. J. Int., 204, 347364.CrossRefGoogle Scholar
Ermert, L., Sager, K., Afanasiev, M., Boehm, C., Fichtner, A., 2017. Ambient seismic source inversion in a heterogeneous Earth: Theory and application to the Earth’s Hum. J. Geophys. Res. Solid Earth, 122, 91849207.Google Scholar
Ewing, W. M., Jardetsky, W. S. & Press, F., 1957. Elastic Waves in Layered Media, McGraw-Hill, New York.Google Scholar
Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A., 1997. 2D and 3D elastic wave propagation by a pseudospectral domain decomposition method, J. Seism., 1, 237251.Google Scholar
Feng, J., Yao, H., Poli, P., Fang, L., Wu, Y., Zhang, P., 2017. Depth variations of 410 km and 660 km discontinuities in eastern North China Craton revealed by ambient noise interferometry, Geophys. Res. Lett., 44, 83288335.CrossRefGoogle Scholar
Fichtner, A., 2006. The adjoint method in seismology – I. Theory, Phys. Earth Planet. Int., 157, 86104.CrossRefGoogle Scholar
Fichtner, A., Igel, H., 2008. Efficient numerical surface wave propagation through the optimization of discrete crustal models - a technique based on non-linear dispersion curve matching (DCM), Geophys. J. Int., 173, 519533.CrossRefGoogle Scholar
Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2008. Theoretical background for continental and global scale full-waveform inversion in the time-frequency domain, Geophys. J. Int., 175, 665685.CrossRefGoogle Scholar
Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2009. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods, Geophys. J. Int., 179, 17031725.CrossRefGoogle Scholar
Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2010. Full seismic waveform tomography for radially anisotropic structure: New insights into the past and present states of the Australasian upper mantle, Earth. Planet. Sci. Lett., 290, 270280.CrossRefGoogle Scholar
Fichtner, A., 2011. Full Seismogram Waveform Modelling and Inversion, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Fichtner, A., Trampert, J., 2011a. Hessian kernels of seismic data functionals based upon adjoint techniques, Geophys. J. Int., 185, 775798.Google Scholar
Fichtner, A., Trampert, J., 2011b. Resolution analysis in full waveform inversion, Geophys. J. Int., 187, 16041624.CrossRefGoogle Scholar
Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., Villasenor, A., 2013. Multi-scale full-waveform inversion, Geophys. J. Int., 194, 534556.Google Scholar
Fichtner, A., Kennett, B.L.N., Trampert, J., 2013. Separating intrinsic and apparent anisotropy, Phys. Earth Planet. Int., 219, 1122.CrossRefGoogle Scholar
Fichtner, A., 2014. Source and processing effects on noise correlations, Geophys. J. Int., 197, 15271531.CrossRefGoogle Scholar
Fichtner, A., van Leeuwen, T., 2015. Resolution analysis by random probing, J. Geophys. Res., 120, 55495573.Google Scholar
Fichtner, A., Hanasoge, S.M., 2017. Discrete wave equation upscaling, Geophys. J. Int., 209, 353357.CrossRefGoogle Scholar
Fichtner, A., Stehly, L., Ermert, L., Boehm, C., 2017. Generalized interferometry – I: theory for interstation correlations, Geophys. J. Int., 208, 603638.CrossRefGoogle Scholar
Fichtner, A., van Herwaarden, D.-P., Afanasiev, M., Simute, S., Krischer, L., Cubuk-Sabuncu, Y., Taymaz, T., Colli, L., Saygin, E., Villasenor, A., Trampert, J., Cupillard, P., Bunge, H.-P., Igel, H., 2018a. The Collaborative Seismic Earth Model: Generation I, Geophys. Res. Lett., 45, 4007–4016.Google Scholar
Fichtner, A., Zunino, A., Gebraad, L., 2018b. Hamiltonian Monte Carlo solution of tomographic inverse problems, Geophys. J. Int., 216, 1344–1363.Google Scholar
Fichtner, A., Tsai, V., 2019. Theoretical foundations of noise interferometry, 109–143, in Seismic Ambient Noise, eds. Nakata, N., Gualtieri, L., Fichtner, A., Cambridge University Press, Cambridge.Google Scholar
Fichtner, A., Zunino, A., 2019. Hamiltonian nullspace shuttles, Geophys. Res. Lett., 46, 644651.Google Scholar
Fishwick, S., Kennett, B.L.N., Reading, A.M., 2005. Contrasts in lithospheric structure within the Australian Craton, Earth Planet. Sci. Lett., 231, 163176.Google Scholar
Flatté, S.M., Wu, R.S., 1988. Small scale structure in the lithosphere and asthenosphere deduced from arrival time and amplitude fluctuations at NORSAR, J. Geophys. Res., 93, 66016614.CrossRefGoogle Scholar
Fletcher, R., 1970. A new approach to variable metric algorithms, Comp. J., 13, 317322.Google Scholar
Ford, H.A., Fischer, K.M., Abt, D.L., Rychert, C.A., Elkins-Tanton, L.T., 2013. The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging, Earth Planet. Sci. Lett., 300, 299310.Google Scholar
Forsyth, D.W., Li, A., 2005. Array-analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multi-pathing interference, in Seismic Earth: Array Analysis of Broadband Seismograms, eds. Levander A., Nolet G., AGU Geophysical Monograph, 157, 8198.Google Scholar
Frasier, C.W., 1970. Discrete time solution of plane P–SV waves in a plane layered medium, Geophysics, 35, 197219.CrossRefGoogle Scholar
French, S.W., Romanowicz, B.A., 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography, Geophys. J. Int., 199, 13031327.Google Scholar
Frenkel, A., Clayton, R.W., 1986. Finite difference simulation of seismic scattering: implications for the propagation of short-period seismic waves in the crust and models in crustal heterogeneity, J. Geophys. Res., 91, 64656489.CrossRefGoogle Scholar
Friederich, W., Wielandt, E., Stange, S., 1993. Multiple forward scattering of teleseismic surface waves: Comparison with an exact solution and Born single-scattering methods, Geophys. J. Int., 112, 264275.CrossRefGoogle Scholar
Friederich, W., Wielandt, E., Stange, S., 1994. Non-plane geometries of seismic surface wavefields and their implications for regional surface-wave tomography, Geophys. J. Int., 119, 931948.Google Scholar
Friederich, W., Wielandt, E., 1995. Interpretation of seismic surface waves in regional networks: Joint estimation of wavefield geometry and local phase velocity, Geophys. J. Int., 120, 731744.Google Scholar
Fuchs, K., 1968. Das Reflexions- und Transmissionsvermögen eines geschichteten Mediums mit belieber Tiefen-Verteilung der elastischen Moduln und der Dichte für schragen Einfall Ebener Wellen, Z. Geophys., 34, 389411.Google Scholar
Fuchs, K., Müller, G., 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astr. Soc., 23, 417433.CrossRefGoogle Scholar
Fukao, Y., Nishida, K., Kobayashi, N., 2010. Sea floor topography, ocean infragravity waves, and background Love and Rayleigh waves, J. Geophys. Res., 115, B04302.CrossRefGoogle Scholar
Furumura, T., Kennett, B.L.N, Furumura, M., 1998. Synthetic seismograms for a laterally heterogeneous whole earth models by the pseudospectral method, Geophys. J. Int., 135, 845860.CrossRefGoogle Scholar
Furumura, T., Kennett, B.L.N., 2005. Subduction zone guided waves and the heterogeneity structure of the subducted plate – intensity anomalies in northern Japan, J. Geophys. Res., 110(B10), B10302.Google Scholar
Furumura, T., Kennett, B.L.N., 2008. A scattering waveguide in the heterogeneous subducting plate, in Scattering of Short-Period Seismic Waves in Earth Heterogeneity, eds. Sato H., Fehler M., Advances in Geophysics, 50, 195217.CrossRefGoogle Scholar
Furumura, T., Kennett, B.L.N., Padhy, S., 2016. Enhanced waveguide effect for deep-focus earthquakes in the subducting Pacific slab produced by a metastable olivine wedge, J. Geophys. Res. Solid Earth, 121, 67796796.Google Scholar
Gal, M., Reading, A.M., Ellingsen, S.P., Koper, K.D., Burlacu, R., 2017. Full wavefield decomposition of high-frequency secondary microseisms reveals distinct arrival azimuths for Rayleigh and Love waves, J. Geophys. Res. Solid Earth, 122, 46604675.CrossRefGoogle Scholar
Galetti, E., Curtis, A., 2012. Generalised receiver functions and seismic interferometry, Tectonophysics, 532, 126.CrossRefGoogle Scholar
Garth, T., Rietbrock, A., 2014. Downdip velocity changes in subducted oceanic crust beneath Northern Japan : insights from guided waves, Geophys. J. Int., 198, 13421358.Google Scholar
Gauthier, O., Virieux, J., Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic waveforms: numerical results, Geophysics, 51, 1387–1403.Google Scholar
Gebraad, L., Boehm, C., Fichtner, A., 2020. Bayesian elastic full-waveform inversion using Hamiltonian Monte Carlo, J. Geophys. Res., 125, e2019JB018428.Google Scholar
Gee, L., Jordan, T.H., 1992. Generalised seismological data functionals, Geophys. J. Int., 111, 363390.Google Scholar
Geli, L., Bard, P-Y., Jullien, B., 1988. The effect of topography on earthquake ground motion: A review and new results, Bull. Seism. Soc. Am., 78, 4263.CrossRefGoogle Scholar
Giardini, D., and 62 others, 2020. The seismicity of Mars, Nature Geoscience, 13, 205–212.Google Scholar
Gilbert, F., 1976. The representation of seismic displacements in terms of travelling waves, Geophys. J. R. Astr. Soc., 44, 275280.CrossRefGoogle Scholar
Gilbert, F., Helmberger, D.V., 1972. Generalized ray theory for a layered sphere, Geophys. J. R. Astr. Soc., 27, 5780.CrossRefGoogle Scholar
Gokhberg, A., Fichtner, A., 2016. Full-waveform inversion on heterogeneous HPC systems, Comp. Geosci., 89, 260268.CrossRefGoogle Scholar
Goldfarb, D., 1970. A family of variable metric updates derived by variational means, Math. Comp., 24, 2326.CrossRefGoogle Scholar
Gorbatov, A., Kennett, B.L.N., Saygin, E., 2013. Crustal properties from seismic station autocorrelograms, Geophys. J. Int., 192, 861870.Google Scholar
Grand, S.P., van der Hilst, R.D., Widiyantoro, S., 1997. Global seismic tomography: a snapshot of convection in the Earth, Geology Today, 7,(4) 17.Google Scholar
Grand, S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs, Phil. Trans. R. Soc. Lond., A360, 24752491.Google Scholar
Gregersen, S., 1978. Possible mode conversions between Love and Rayleigh waves at a continental margin, Geophys. J. R. Astr. Soc., 54, 121127.CrossRefGoogle Scholar
Gregersen, S., Alsop, L.E., 1974. Amplitudes of horizontally refracted Love waves, Bull. Seism. Soc. Am., 64, 535554.CrossRefGoogle Scholar
Griewank, A., Walther, A., 2000. An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, Trans. Math. Software, 26, 1945.CrossRefGoogle Scholar
Gudmundsson, O., Kennett, B.L.N., Goody, A., 1994. Broadband observations of upper mantle seismic phases in northern Australia and the attenuation structure in the upper mantle, Phys. Earth Planet. Inter., 84, 207236.Google Scholar
Gutenberg, B., 1913. Über die Konstitution des Erdinnern, erschlossen aus Erdbebenbeobachtungen, Physikalische Zeitschrift, 14, 12171218.Google Scholar
Halko, N., Martinsson, P.G., Tropp, J.A., 2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53, 217288.CrossRefGoogle Scholar
Halliday, D., Curtis, A., Robertsson, J., van Manen, D., 2007. Interferometric surface-wave isolation and removal, Geophysics, 72, A69–A73.CrossRefGoogle Scholar
Halliday, D., Curtis, A., 2008. Seismic interferometry, surface waves and source distribution, Geophys. J. Int., 175, 10671087.Google Scholar
Hanasoge, S.M., Branicki, M., 2013. Interpreting cross-correlations of one-bit filtered noise, Geophys. J. Int., 195, 18111830.Google Scholar
Hansen, S.M., Dueker, K., Schmandt, B., 2015. Thermal classification of lithospheric discontinuities beneath USArray, Earth Planet. Sci. Lett., 431, 3647Google Scholar
Harding, A.J., 1985. Slowness-time mapping of near offset seismic reflection data, Geophys. J. R. astr. Soc., 80, 463492.Google Scholar
Hasselmann, K. 1963. A statistical analysis of the generation of microseisms, Rev. Geophys., 1, 177210.CrossRefGoogle Scholar
Hedlin, M.A.H., Shearer, P., 2000. An analysis of large scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP, J. Geophys. Res., 105, 13 655–13 673.CrossRefGoogle Scholar
Helmberger, D. V., 1968. The crust-mantle transition in the Bering Sea, Bull. Seism. Soc. Am., 58, 179214.Google Scholar
Helmberger, D. V. , Wiggins, R. A., 1971. Upper mantle structure of the midwestern United States, J. Geophys. Res., 76, 32293245.Google Scholar
Hirschmann, M.M., 2010. Partial melt in the oceanic low velocity zone, Phys. Earth Planet. Inter., 179, 6071.CrossRefGoogle Scholar
Hong, T.-K., Kennett, B.L.N., 2002. On a wavelet-based method for the numerical simulation of wave propagation, J. Comput. Phys., 183, 577622.Google Scholar
Hong, T.-K., Kennett, B.L.N., 2003. Scattering attenuation of 2D elastic waves: theory and numerical modeling using a wavelet-based method, Bull. Seism. Soc. Am., 93, 922938.CrossRefGoogle Scholar
Hong, T.-K., Kennett, B.L.N., Wu, R.-S., 2004. Effects of the density perturbation in scattering, Geophys. Res. Lett., 31(13), L13602.Google Scholar
Hong, T.-K., Wu, R.-S., Kennett, B.L.N., 2005. Stochastic features of scattering. Phys. Earth Planet. Inter., 148, 131148.Google Scholar
Hopper, E., Ford, H.A., Fischer, K.M., Lekić, V., Fouch, M.J., 2014. The lithosphere-asthenosphere boundary and the tectonic and magmatic history of the northwestern United States, Earth Planet. Sci. Lett., 402, 6981.Google Scholar
Hron, F., 1972. Numerical methods of ray generation in multilayered media, Methods in Computational Physics, 12, 1–34, ed. Bolt B.A., Academic Press, New York.Google Scholar
Huang, H.-H., Lin, F.-C., Tsai, V.C., Koper, K.D., 2015. High-resolution probing of inner core structure with seismic interferometry. Geophys. Res. Lett., 42, 1062210630.CrossRefGoogle Scholar
Hudson, J.A., 1968. The scattering of elastic waves by granular media, Quart. J. Mech. Appl. Math., 21, 487502.CrossRefGoogle Scholar
Hudson, J.A., Douglas, A., 1975. Rayleigh wave spectra and group velocity minima, and the resonance of P waves in layered structures, Geophys. J. R. Astr. Soc., 42, 175188.Google Scholar
Hudson, J.A., 1982. Use of stochastic models in seismology, Geophys. J. Int., 82, 649657.Google Scholar
Hutchinson, M.F., 1990. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm. Stat. Sim., 19, 433–450.Google Scholar
Igel, H., Djikpéssé, H., Tarantola, A., 1996. Waveform inversion of marine reflection seismograms for P impedance and Poisson’s ratio, Geophys. J. Int., 124, 363371.CrossRefGoogle Scholar
Igel, H., 2016. Computational Seismology: A Practical Introduction, Oxford University Press, Oxford.CrossRefGoogle Scholar
Ishii, M., Tromp, J., 2001. Normal mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle, Science, 285, 12311236.Google Scholar
Ito, Y., Shiomi, K., Nakajima, J., Hino, R., 2012. Autocorrelation analysis of ambient noise in northeastern Japan subduction zone, Tectonophysics, 572, 3846.Google Scholar
Jones, I.F., Davison, I., 2014. Seismic imaging in and around salt bodies, Interpretation, 2(4), SL1–SL20.CrossRefGoogle Scholar
Kárason, H., van der Hilst, R.D., 2000. Constraints on mantle convection from seismic tomography, in, The History and Dynamics of Global Plate Motion, AGU Geophysical Monograph, 121, 277–288.Google Scholar
Karato, S.-I., Karki, B.B., 2001. Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21 771–21 783.Google Scholar
Kawakatsu, H., Watada, S., 2007. Seismic evidence for deep-water transportation in the mantle, Science, 316, 14681471.CrossRefGoogle ScholarPubMed
Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., Suyehiro, K., 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science, 324, 499502.Google Scholar
Kawakatsu, H., Utada, S., 2017. Seismic and electrical signatures of the lithosphere-asthenosphere system of the normal oceanic mantle, Ann. Rev. Earth Planet. Sci., 45, 139167.CrossRefGoogle Scholar
Kennett, B.L.N., 1972. Seismic waves in laterally inhomogeneous media, Geophys. J. R. Astr. Soc., 27, 301325.Google Scholar
Kennett, B.L.N., 1975. The effects of attenuation on seismograms, Bull. Seism. Soc. Am., 65, 16431651.Google Scholar
Kennett, B.L.N., Kerry, N. J. & Woodhouse, J. H., 1978. Symmetries in the reflection and transmission of elastic waves, Geophys. J. R. Astr. Soc. , 52, 215229.CrossRefGoogle Scholar
Kennett, B.L.N., 1979. The suppression of surface multiples on seismic records, Geophys. Prospect., 27, 584600.Google Scholar
Kennett, B.L.N., 1983. Seismic Wave Propagation in Stratified Media, Cambridge University Press. Second edition 2009, ANU Press.Google Scholar
Kennett, B.L.N., Harding, A.J., 1984. Guided low-frequency noise from air-gun sources, Geophys. Prospect., 32, 690705.CrossRefGoogle Scholar
Kennett, B.L.N., 1984a. Reflection operator method for elastic waves I – Irregular interfaces and regions, Wave Motion, 6, 407418.CrossRefGoogle Scholar
Kennett, B.L.N., 1984b. Reflection operator method for elastic waves II – Composite regions and source problems, Wave Motion, 6, 419429.Google Scholar
Kennett, B.L.N., 1984c. Guided waves in laterally varying media, I: Theoretical development, Geophys. J. R. Astr. Soc., 79, 235255.Google Scholar
Kennett, B.L.N., 1986. Wavenumber and wavetype coupling in laterally heterogeneous media, Geophys. J. R. Astr. Soc., 87, 313331.Google Scholar
Kennett, B.L.N., Sambridge, M.S., Williamson, P.R., 1988. Subspace methods for large scale inverse problems involving multiple parameter classes, Geophys. J. Int., 94, 237247.CrossRefGoogle Scholar
Kennett, B.L.N., 1990. Guided wave attenuation in laterally varying media, Geophys. J. Int., 100, 415422.Google Scholar
Kennett, B.L.N., Nolet, G., 1990. The interaction of the S-wavefield with upper mantle heterogeneity, Geophys. J. Int., 101, 751762.Google Scholar
Kennett, B.L.N, Koketsu, K., Haines, A.J, 1990. Propagation invariants, reflection and transmission in anisotropic, laterally varying media, Geophys. J. Int., 103, 95101.CrossRefGoogle Scholar
Kennett, B.L.N., 1991. The removal of free surface interactions from three-component seismograms, Geophys. J. Int., 104, 153163.Google Scholar
Kennett, B.L.N., 1993. A two-layer stacking procedure to enhance converted waves, Geophysics, 58, 9971001.Google Scholar
Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 122, 108124.CrossRefGoogle Scholar
Kennett, B.L.N., 1996. How does the shear-wave structure of the seabed affect the seismic wavefield?, Geophys. J. Int., 124, 341–348.Google Scholar
Kennett, B.L.N., 1998. Guided waves in 3-dimensional structures, Geophys. J. Int., 133, 159174.CrossRefGoogle Scholar
Kennett, B.L.N., Widiyantoro, S., van der Hilst, R.D., 1998. Joint seismic tomography for bulk-sound and shear wavespeed in the Earth’s mantle, J. Geophys. Res., 103, 12 469–12 493.Google Scholar
Kennett, B.L.N., 2001. The Seismic Wavefield I: Introduction and Theoretical Development, Cambridge University Press, Cambridge.Google Scholar
Kennett, B.L.N., 2002. The Seismic Wavefield II: Interpretation of Seismograms on Regional and Global Scales, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kennett, B.L.N., Gorbatov, A., 2004. Seismic heterogeneity in the mantle – strong shear wave signature of slabs, Phys. Earth. Planet. Inter., 146, 88100.Google Scholar
Kennett, B.L.N., Bunge, H.-P., 2008. Geophysical Continua Cambridge University Press, Cambridge.Google Scholar
Kennett, B.L.N., Furumura, T., 2008. Stochastic waveguide in the Lithosphere: Indonesian subduction zone to Australian Craton, Geophys. J. Int., 172, 363382.CrossRefGoogle Scholar
Kennett, B.L.N., Fichtner, A., 2012. A unified concept for the comparison of seismograms using transfer functions, Geophys. J. Int., 191, 14031416.CrossRefGoogle Scholar
Kennett, B.L.N. & Furumura, T., 2013. High-frequency Po/So guided waves in the oceanic lithosphere: I – long-distance propagation, Geophys. J. Int., 195, 18621877.Google Scholar
Kennett, B.L.N., Fichtner, A., Fishwick, S., Yoshizawa, K., 2013. Australian Seismological Reference Model (AuSREM): mantle component, Geophys. J. Int., 192, 871887.Google Scholar
Kennett, B.L.N., Furumura, T., Zhao, Y., 2014. High-frequency Po/So guided waves in the oceanic lithosphere: II – Heterogeneity and attenuation, Geophys. J. Int., 199, 614630.Google Scholar
Kennett, B.L.N., 2015. Lithosphere–asthenosphere P-wave reflectivity across Australia, Earth Planet. Sci. Lett., 431, 225235.Google Scholar
Kennett, B.L.N., Stipčević, J., Gorbatov, A., 2015a. Spiral arm seismic arrays, Bull. Seism. Soc. Am., 105, 21092116.Google Scholar
Kennett, B.L.N., Saygin, E., Salmon, M., 2015b. Stacking autocorrelograms to map Moho depth with high spatial resolution in southeastern Australia, Geophys. Res. Lett., 42, 74907497.Google Scholar
Kennett, B.L.N., Furumura, T., 2015. Towards the reconciliation of seismological and petrological perspectives on oceanic lithosphere heterogeneity, Geochem. Geophys. Geosyst., 16, 31293141.CrossRefGoogle Scholar
Kennett, B.L.N., Furumura, T., 2016. Multi-scale seismic heterogeneity in the continental lithosphere, Geochem. Geophys. Geosys., 17, 791809.CrossRefGoogle Scholar
Kennett, B.L.N., Yoshizawa, K., Furumura, T. 2017. Interactions of multi-scale heterogeneity in the lithosphere: Australia, Tectonophysics, 717, 193–213.CrossRefGoogle Scholar
Kennett, B.L.N., Pham, T.-S., 2018a. The nature of the seismic correlation wavefield: Late coda correlations, Proc. R. Soc. Lond. A, 474, 20180082, doi:10.1098/rspa.2018.0082Google Scholar
Kennett, B.L.N., Pham, T.-S., 2018b. Evolution of the seismic correlation wavefield for event coda, Phys. Earth. Planet. Inter., 282, 100–109.CrossRefGoogle Scholar
Kennett, B.L.N., Sippl, C., 2018. Lithospheric discontinuities in central Australia, Tectonophysics, 744, 1022.Google Scholar
Kennett, B.L.N., Furumura, T., 2019. Significant P wave conversions from upgoing S waves generated by very deep earthquakes around Japan, Prog. Earth Planet. Sci., 6:49.Google Scholar
Kent, G.H., Harding, A.J., Orcutt, J.A., 1993. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9◦ 17′ N Deval from forward modeling of common depth point data, J. Geophys. Res., 98, 13 945–13 969.#################Google Scholar
Kim, N.W., Seriff, A.J., 1992. Marine PSSP reflections with a bottom velocity transition zone, Geophysics, 57, 161170.Google Scholar
Kimman, W., Trampert, J., 2010. Approximations in seismic interferometry and their effects on surface waves, Geophys. J. Int., 182, 461476.Google Scholar
Kind, R., Kosarev, G.L., Petersen, N.V., 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN), Geophys. J. Int., 121, 191–202.Google Scholar
King, D.W., Haddon, R.A.W., Cleary, J. R., 1974. Array analysis of precursors to PKIKP in the distance range 128◦ to 142 ◦ , Geophys. J. R. Astr. Soc., 37, 157173.CrossRefGoogle Scholar
King, S.D., Anderson, D.L., 1998. Edge-driven convection, Earth Planet. Sci. Lett., 160, 289296.Google Scholar
Knopoff, L., 1972. Observation and inversion of surface-wave dispersion, Tectonophysics, 13, 497519.Google Scholar
Koketsu, K., Kennett, B.L.N., Takenaka, H., 1991. 2-D reflectivity method and synthetic seismograms for irregularly layered structures – II. Invariant embedding approach, Geophys. J. Int., 105, 119130.Google Scholar
Komatitsch, D., Tromp, J., 2002a. Spectral-element simulations of global seismic wave propagation – I. Validation, Geophys. J. Int., 149, 390412.CrossRefGoogle Scholar
Komatitsch, D., Tromp, J., 2002b. Spectral-element simulations of global seismic wave propagation – II. Three-dimensional models, oceans, rotation and self-gravitation, Geophys. J. Int., 150, 303318.Google Scholar
Koper, K.D., Franks, J.M., Dombrovskaya, M., 2004. Evidence for small-scale heterogeneity in Earth’s inner core from a global study of PKiKP coda waves. Earth Planet. Sci. Lett., 228, 227241.CrossRefGoogle Scholar
Korn, M., 1988. P-wave coda analysis of short-period array data and the scattering and absorptive properties of the lithosphere. Geophys. J. Int., 93, 437449.Google Scholar
Krischer, L., Fichtner, A., Žukauskaitė, S., Igel, H., 2015. Large-scale seismic inversion framework, Seis. Res. Lett., 86, 11981207.Google Scholar
Krischer, L., Igel, H., Fichtner, A., 2018. Automated large-scale full seismic waveform inversion for North America and the North Atlantic, J. Geophys. Res., 123, 59025928.CrossRefGoogle Scholar
Kunetz, A., d’Erceville, E., 1962. Sur certaines propriétés d’une onde acoustique plane de compression dans une milieu stratifieé, Ann. de Geophys., 18, 351359.Google Scholar
Kuo, C., Romanowicz, B., 2002. On the resolution of density anomalies in the Earth’s mantle using spectral fitting of normal-mode data, Geophys. J. Int., 150, 162179.CrossRefGoogle Scholar
Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. Lond., 203A, 142.Google Scholar
Lapwood, E. R., 1948. The disturbance due to a line source in a semi-infinite elastic medium, Phil. Trans. R. Soc. Lond., 242A, 63100.Google Scholar
Lapwood, E.R., Usami, T., 1981. Free Oscillations of the Earth, Cambridge University Press, Cambridge.Google Scholar
Larmat, C., Montagner, J.-P., Fink, M., Capdeville, Y., Tourin, A., Clévédé, E., 2006. Time-reversal imaging of seismic sources and application to the great Sumatra earthquake, Geophys. Res. Lett., 33, doi:10.1029/2006GL026336.Google Scholar
Laske, G., Masters, G., 1996. Constraints on global phase velocity maps from long-period polarization data, J. Geophys. Res., 101, 16 059–16 075.Google Scholar
Laske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 – A 1-degree global model of Earth’s crust, Geophys. Res. Abstracts, 15, EGU2013–2658.Google Scholar
Lebedev, S., Schaeffer, A. J., 2013. Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417449.Google Scholar
Lehmann, I., 1936. P′ , Publ. Bureau Central Seism. Int. Série A, 14, 87115.Google Scholar
Leng, K., Nissen-Meyer, T., van Driel, M., Hosseini, K., Al-Attar, D., 2019. AxiSEM3D: broadband seismic wavefields in 3-D global Earth models with undulating discontinuities, Geophys. J. Int., 217, 21252146.Google Scholar
Levshin, A.L., 1985. Effect of lateral inhomogeneities on surface wave amplitude measurements, Ann. Geophys., 3, 511518.Google Scholar
Levshin, A.L., Ritzwoller, M.H., 2001. Automated detection, extraction, and measurement of regional surface waves, Pure Appl. Geophys., 158, 15311545.Google Scholar
Li, X.D., Romanowicz, B., 1995. Comparison of global waveform inversions with and without considering cross-branch modal coupling, Geophys. J. Int., 121, 695709.Google Scholar
Li, L., Boué, P., Campillo, M., 2020. Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations, Solid Earth, 11, 173184.CrossRefGoogle Scholar
Lin, F.-C., Moschetti, M.P., Ritzwoller, M.H., 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophys. J. Int., 173, 281298.CrossRefGoogle Scholar
Lin, F.-C., Tsai, V.C., Schmandt, B., Duputel, Z., Zhan, Z., 2013. Extracting seismic core phases with array interferometry, Geophys. Res. Lett., 40, 10491053.Google Scholar
Lindsey, N.J., Martin, E.R., Dreger, D.S., Freifeld, B., Cole, S., James, S.R., Biondi, B., Ajo-Franklin, J., 2017. Fiber-optic network observations of earthquake wavefields, Geophys. Res. Lett., 44, 1179211799.CrossRefGoogle Scholar
Liu, Q., Polet, J., Komatitsch, D., Tromp, J., 2004. Spectral-element moment tensor inversion for earthquakes in Southern California, Bull. Seis. Soc. Am., 94, 17481761.Google Scholar
Lobkis, O.I., Weaver, R.L., 2001. On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 30113017.CrossRefGoogle Scholar
Lognonné, P., and 108 others, 2020. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data, Nature Geoscience, 13, 213–220.CrossRefGoogle Scholar
Lomas, A., Curtis, A., 2019. An introduction to Marchenko methods for imaging, Geophysics, 84, F35–F45.Google Scholar
Longuet-Higgins, M.S., 1950. A theory of the origin of microseisms, Phil. Trans. R. Soc. Lond. A, 243, 135.Google Scholar
Luo, Y., Schuster, G.T., 1991. Wave-equation traveltime inversion, Geophysics, 56, 645653.CrossRefGoogle Scholar
Love, A.E.H., 1911. Some Problems of Geodynamics, Cambridge University Press.Google Scholar
Lysmer, J., Drake, L., 1972. A finite element method for seismology, Methods in Computational Physics, 11, 181–216, ed. Bolt B.A., Academic Press, New York.Google Scholar
Lythgoe, K.H., Deuss, A., Rudge, J.F., Neufeld, J.A., 2014. Earth’s inner core: Innermost inner core or hemispherical variations?, Earth Planet. Sci. Lett., 385, 181189.CrossRefGoogle Scholar
Ma, S., Beroza, G.C., 2012. Ambient-field Green’s functions from asynchronous seismic observations, Geophys. Res. Lett., 39, L06301.CrossRefGoogle Scholar
Maggi, A., Tape, C., Chen, M., Chao, D., Tromp, J., 2009. An automated time-window selection algorithm for seismic tomography, Geophys. J. Int., 178, 257281.CrossRefGoogle Scholar
Malcolm, A.E., Scales, J., van Tiggelen, B.A., 2004. Extracting the Green function from diffuse, equipartitioned waves, Phys. Rev. E, 70, doi:10.1103/PhysRevE.70.015601.Google Scholar
Malcolm, A.E., Trampert, J., 2011. Tomographic errors from wave front healing: more than just a fast bias, Geophys. J. Int., 185, 385402.Google Scholar
Mancinelli, N.J., Shearer, P.M., 2013. Reconciling discrepancies among estimates of small-scale mantle heterogeneity from PKP precursors. Geophys. J. Int. 195, 17211729.Google Scholar
Margerin, L., 2004. Introduction to radiative transfer of seismic waves, in Seismic Earth: Array Analysis of Broadband Seismograms, eds. Levander A., Nolet G., AGU Geophysical Monograph, 157, 229252.Google Scholar
Marson-Pidgeon, K., Kennett, B.L.N., 2000. Flexible computation of teleseismic synthetics for source and structural studies, Geophys. J. Int., 125, 229248.Google Scholar
Martin, S., Rietbrock, A., Haberland, C., Asch, G., 2003. Guided waves propagating in subducted oceanic crust, J. Geophys. Res. Solid Earth, 108, 2536.CrossRefGoogle Scholar
Martin, S., Rietbrock, A., 2006. Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sources. Geophys. J. Int., 167, 693704.Google Scholar
Masters, G., Laske, G., Bolton, H., Dziewonski, A., 2000. The relative behaviour of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. AGU Geophysical Monograph 117, 63–87.Google Scholar
Matharu, G., Sacchi, M., 2019. A subsampled truncated Newton method for multiparameter full-waveform inversion, Geophysics, 84, R333–R340.CrossRefGoogle Scholar
Maupin, V., 1988. Surface waves across 2D structure: a method based on coupled local modes, Geophys. J. Int., 93, 173185.CrossRefGoogle Scholar
Maupin, V., 1992. Modelling of laterally trapped surface waves with application to Rayleigh waves on the Hawaiian swell, Geophys. J. Int., 110, 553570.CrossRefGoogle Scholar
Maupin, V., 2001. A multiple scattering scheme for modelling surface wave propagation in isotropic and anisotropic three-dimensional structures, Geophys. J. Int., 146, 332348.CrossRefGoogle Scholar
Maupin, V., 2007. Introduction to mode coupling methods for surface waves, Advances in Geophysics, 48, 127155.Google Scholar
Megnin, C., Romanowicz, B., 2000. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms, Geophys. J. Int., 143, 709728.CrossRefGoogle Scholar
Meier, U., Curtis, A., Trampert, J., 2007. Global crustal thickness from neural network inversion of surface wave data, Geophys. J. Int., 169, 706722.Google Scholar
Métivier, L., Brossier, R., Virieux, J., Operto, S., 2013. Full-waveform inversion and the truncated Newton method, SIAM J. Sci. Comp., 35, B401–B437.CrossRefGoogle Scholar
Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J., 2016. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion, Geophys. J. Int., 205, 345377.CrossRefGoogle Scholar
Miller, M.S., Kennett, B.L.N., Gorbatov, A., 2006. Morphology of the distorted subducted Pacific slab beneath the Hokkaido corner, Phys. Earth Planet. Inter., 156, 111.Google Scholar
Miller, M.S., Niu, F. 2008, Bulldozing the core-mantle boundary: Localized seismic scatterers beneath the Caribbean Sea. Phys. Earth Planet. Inter., 170, 8994.CrossRefGoogle Scholar
Moczo, P., Kristek, J., Halada, L., 2000. 3D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion, Bull. Seis. Soc. Am., 90, 587603.Google Scholar
Moczo, P., Kristek, J., Galis, M., 2014. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures, Cambridge University Press, Cambridge.Google Scholar
Modrak, R., Tromp, J., 2016. Seismic waveform inversion best practices: regional, global and exploration test cases, Geophys. J. Int., 206, 18641889.CrossRefGoogle Scholar
Modrak, R., Borisov, D., Lefebvre, M., Tromp, J., 2018. SeisFlows – flexible waveform inversion software, Comp. Geosci., 115, 8895.Google Scholar
Montagner, J.-P., Kennett, B.L.N., 1996. How to reconcile body-wave and normal-mode reference Earth models?, Geophys. J. Int., 125, 229248.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Hung, S., 2003. Finite-frequency tomography reveals a variety of plumes in the mantle, Science 303, 338343.CrossRefGoogle ScholarPubMed
Mosegaard, K., Tarantola, A., 1995. Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 1243112447.Google Scholar
Mosegaard, K., 2012. Limits to nonlinear inversion, Appl. Parallel Sci. Comp, 1121.CrossRefGoogle Scholar
Morozov, I.B., Morozova, E.A. & Smithson, S.B., 1998. On the nature of the teleseismic Pn phase observed in the recordings from the ultra-long-range profile “Quartz”, Bull. Seism. Soc. Am., 88, 62–73.CrossRefGoogle Scholar
Müller, G., 1970. Exact ray theory and its application to the reflection of elastic waves from vertically inhomogeneous media, Geophys. J. R. Astr. Soc., 21, 261283.Google Scholar
Nakata, N., Chang, J.P., Lawrence, J.F., Boué, P., 2015. Body-wave extraction and tomography at Long Beach, California, with ambient-noise interferometry, J. Geophys. Res. Solid Earth, 120, 11591173.CrossRefGoogle Scholar
Nakata, N., Gualtieri, L., Fichtner, A. (eds.), 2019. Seismic Ambient Noise, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Nakata, N., Nishida, K., 2019. Body wave exploration, 239–266, in Seismic Ambient Noise, eds. Nakata, N., Gualtieri, L., Fichtner, A., Cambridge University Press, Cambridge.Google Scholar
Neal, R. M., 2011. MCMC using Hamiltonian dynamics, Handbook of Markov chain Monte Carlo, 113162.CrossRefGoogle Scholar
Nielsen, L., Thybo, H., Levander, A., Solodilov, L.N., 2003. Origin of upper-mantle seismic scattering – Evidence from Russian peaceful nuclear explosion data. Geophys. J. Int., 154, 196204.CrossRefGoogle Scholar
Nishida, K., Fukao, Y., 2007. Source distribution of Earth’s background free oscillations. J. Geophys. Res., 112, doi: 10.1029/2006JB004720.CrossRefGoogle Scholar
Nishida, K., Montagner, J.-P., Kawakatsu, H., 2009. Global surface wave tomography using seismic hum, Science, 326, 112.CrossRefGoogle ScholarPubMed
Nishida, K., 2013. Global propagation of body waves revealed by cross-correlation analysis of seismic hum, Geophys. Res. Lett., 40, 16911696.Google Scholar
Nissen-Meyer, T., Fournier, A., Dahlen, F.A., 2007. A two-dimensional spectral-element method for computing spherical-Earth seismograms – I. Moment-tensor source, Geophys. J. Int., 168, 10671092.CrossRefGoogle Scholar
Nissen-Meyer, T., van Driel, M., Stähler, S.C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., Fournier, A., 2014. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media, Solid Earth, 5, 425445.Google Scholar
Nocedal, J., 1980. Updating quasi-Newton matrices with limited storage, Math. Comp., 35, 773782.Google Scholar
Nocedal, J., Wright, S.J., 1999. Numerical Optimization, Springer, New York.Google Scholar
Nolet, G., Kennett, B.L.N., 1978. Normal mode representations of multiple ray reflections in a spherical Earth, Geophys. J. R. Astr. Soc., 53, 219226.Google Scholar
Nolet, G., 1990. Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs, J. Geophys. Res, 95, 8499–8512.Google Scholar
Nolet, G., Grand, S., Kennett, B.L.N., 1994. Seismic heterogeneity in the upper mantle, J. Geophys. Res., 99, 23 753–23 766.Google Scholar
Nolet, G., 2006. A Breviary of Seismic Tomography, Cambridge University Press, Cambridge, .Google Scholar
Nussenveig, H.M., 1965. High frequency scattering by an impenetrable sphere, Ann. Phys., 34, 2395.Google Scholar
Oikawa, M., Kaneda, K., Nishizawa, A., 2010. Seismic structures of the 154–160 Ma oceanic crust and uppermost mantle in the Northwest Pacific Basin, Earth Planets Space, 62(4), e13–e16.Google Scholar
Oldham, R.D., 1906. The constitution of the Earth as revealed by earthquakes, Quart. J. Geol. Soc. London, 62, 456476.Google Scholar
Olver, F.W.J., 1974. Asymptotics and Special Functions, Academic Press, New York.Google Scholar
Paitz, P., Sager, K., Fichtner, A., 2019. Rotation and strain ambient noise interferometry, Geophys. J. Int., 216, 19381952.Google Scholar
Panning, M., Romanowicz, B., 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int., 167, 361379.Google Scholar
Parker, T., Shatalin, S., Farhadiroushan, M., 2014, Distributed acoustic sensing – A new tool for seismic applications, First Break, 32(2), 6169.CrossRefGoogle Scholar
Parkes, G., Hatton, L., 1986. The Marine Seismic Source, D. Riedel, Dordrecht.Google Scholar
Pedersen, H.A., Bruneton, M., Maupin, V., 2006. Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave array analysis, Earth Planet. Sci. Lett., 244, 590605.Google Scholar
Pedersen, H.A., Boué, P., Poli, P., Colombi, A., 2015. Arrival angle anomalies of Rayleigh waves observed at a broadband array: a systematic study based on earthquake data, full waveform simulations and noise correlations, Geophys. J. Int., 203, 16261641.CrossRefGoogle Scholar
Pekeris, C. L., 1948. Theory of propagation of explosive sound in shallow water, Geol. Soc. Am. Memoirs, 27.Google Scholar
Peng, Z., Koper, K.D., Vidale, J.E., Leyton, F., .Shearer, P., 2008. Inner-core fine-scale structure from scattered waves recorded by LASA. J. Geophys. Res., 113, B09312.CrossRefGoogle Scholar
Peterson, J., 1993. Observations and modeling of seismic background noise. U.S. Geol. Surv. Tech. Rept., 93-322, 195.Google Scholar
Pham, T.-S., Tkalčić, H., 2017. On the feasibility and use of teleseismic P wave coda autocorrelation for mapping shallow seismic discontinuities, J. Geophys. Res. Solid Earth, 122, 37763791.Google Scholar
Pham, T.-S., Tkalčić, H., 2018. Antarctic ice properties revealed from teleseismic P wave coda autocorrelation, J. Geophys. Res. Solid Earth, 123, 78967912.CrossRefGoogle Scholar
Pham, T.-S., Tkalčić, H., Sambridge, M., Kennett, B.L.N., 2018. Earth’s Correlation Wavefield: Late coda correlation, Geophys. Res. Lett., 45, 30353042.Google Scholar
Piromallo, C., Morelli, A., 1997. Imaging the Mediterranean upper mantle by P-wave travel time tomography, Ann. Geophys., 40, 965979.Google Scholar
Poli, P., Pedersen, H.A., Campillo, M., POLENET/LAPNET working group, 2012a. Emergence of body waves from cross-correlation of short period seismic noise, Geophys. J. Int., 188, 549–558.CrossRefGoogle Scholar
Poli, P., Campillo, M., Pedersen, H., LAPNET working group, 2012b. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise, Science, 338,1063–1065.Google Scholar
Poli, P., Thomas, C., Campillo, M., Pedersen, H.A., 2015. Imaging the D″ reflector with noise correlations, Geophys. Res. Lett., 42, 6065.Google Scholar
Poli, P., Campillo, M., de Hoop, M., 2017. Analysis of intermediate period correlations of coda from deep earthquakes. Earth Planet. Sci. Lett., 477, 147155.Google Scholar
Poupinet, G., Kennett, B.L.N., 2004. On the observation of high frequency PKiKP and its coda in Australia, Phys. Earth. Planet. Inter., 146, 497511.Google Scholar
Pratt, R.G., Shin, C., Hicks, G.J., 1998. Gauss-Newton and full Newton methods in frequency domain seismic waveform inversion, Geophys. J. Int., 133, 341–362.Google Scholar
Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model, Geophysics, 64, 888901.Google Scholar
Pugin, A., Yilmaz, Ö., 2019. Optimum source-receiver orientations to capture PP, PS, SP and SS reflected wave modes, Leading Edge, 38(1), 4552.Google Scholar
Quarteroni, A., Sacco, R., Saleri, F., 2000. Numerical Mathematics, Springer, New York.Google Scholar
Rawlinson, N., Kennett, B.L.N., 2004. Rapid estimation of relative and absolute delay times across a network by adaptive stacking, Geophys. J. Int., 157, 332340.Google Scholar
Rawlinson, N., Sambridge, M., 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method Geophys. J. Int., 156), 631–647Google Scholar
Rawlinson, N., Urvoy, M., 2006. Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania, Geophys. Res. Lett., 33, L24313, doi:10.1029/2006GL028105.CrossRefGoogle Scholar
Rawlinson, N., Fichtner, A., Sambridge, M., Young, M.K., 2014. Seismic tomography and the assessment of uncertainty, Adv. Geophys., 55, 176.Google Scholar
Rawlinson, N., Kennett, B.L.N., Salmon, M., Glen, R.A., 2015. Origin of lateral heterogeneities in the upper mantle beneath southeast Australia from seismic tomography, 47–78, in: The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, eds. Khan, A., Deschamps, F., Springer, Heidelberg.Google Scholar
Reading, A., Kennett, B., Sambridge, M., 2003. Improved inversion for seismic structure using transformed S-wavevector receiver functions: Removing the effect of the free surface, Geophys. Res. Lett., 30, 1981.CrossRefGoogle Scholar
Resovsky, J., Trampert, J., 2003. Using probabilistic seismic tomography to test mantle velocity-density relationships, Earth Planet. Sci. Lett., 215, 121134.Google Scholar
Rial, J.A., Cormier, V.F., 1980. Seismic waves at the epicenter’s antipode, J. Geophys. Res., 85, 26612668.Google Scholar
Rietmann, M., Grote, M., Peter, D., Schenk, O., 2017. Newmark local time stepping on high-performance computing architectures, J. Comp. Phys., 334, 308326.Google Scholar
Ritsema, J., van Heijst, H.J., Woodhouse, J.H., 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 19251928.Google Scholar
Ritsema, J., van Heijst, H.J., 2002. Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes, Geophys. J. Int., 149, 482489.Google Scholar
Ritsema, J., Deuss, A., van Heijst, H.J., Woodhouse, J.H., 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 12231236,Google Scholar
Ritzwoller, M.H., Feng, L., 2019. Overview of pre- and post-processing of ambient noise correlations, 144–187, in Seismic Ambient Noise, eds. Nakata N., Gualtieri L., Fichtner A., Cambridge University Press, Cambridge.Google Scholar
Rosenbrock, H.H., 1960. An automatic method for finding the greatest or least value of a function, Comp. J., 3, 175184.Google Scholar
Rost, S., Earle, P.S., 2010. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy, Earth Planet. Sci. Lett., 297, 616626.Google Scholar
Rost, S., Earle, P.S., Shearer, P.M., Frost, D.A., Selby, N.D., 2015. Seismic detections of small-scale heterogeneities in the deep Earth, 367–390, in: The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, eds. Khan A. & Deschamps F., Springer, Heidelberg.Google Scholar
Roth, M., Korn, M., 1993. Single scattering theory versus numerical modelling in 2-D random media, Geophys. J. Int., 112, 124140.Google Scholar
Roux, P., Sabra, K., Gerstoft, P., Kuperman, W., 2005. P-waves from cross correlation of seismic noise, Geophys. Res. Lett., 32, L19303.Google Scholar
Roux, P., 2009. Passive seismic imaging with directive ambient noise: application to surface waves and the San Andreas Fault in Parkfield, CA, Geophys. J. Int., 179, 367373.Google Scholar
Rubin, K.H., Sinton, J.M., Maclennan, J., Hellebrand, E., 2009. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes, Nature Geosci., 2, 321328.CrossRefGoogle Scholar
Ruigrok, E., Campman, X., Draganov, D., Wapenaar, K., 2010. High-resolution lithospheric imaging with seismic interferometry, Geophys. J. Int., 183, 339357.Google Scholar
Ruigrok, E., Wapenaar, K., 2012. Global-phase seismic interferometry unveils P-wave reflectivity below the Himalayas and Tibet, Geophys. Res. Lett., 39, L11303.CrossRefGoogle Scholar
Sager, K., Boehm, C., Ermert, L., Krischer, L., Fichtner, A., 2018. Sensitivity of seismic noise correlation functions to global noise sources, J. Geophys. Res., 123, 69116921.Google Scholar
Sager, K., Boehm, C., Ermert, L., Krischer, L., Fichtner, A., 2020. Global-scale full-waveform ambient noise inversion, J. Geophys. Res., 125, e2019JB018644.Google Scholar
Saito, T., 2010. Love-wave excitation due to the interaction between a propagating ocean wave and the sea-bottom topography, Geophys. J. Int., 182, 15151523.CrossRefGoogle Scholar
Salmon, M., Kennett, B.L.N., Stern, T., Aitken, A.R.A., 2013. The Moho in Australia and New Zealand, Tectonophysics, 609, 288–298.Google Scholar
Sambridge, M.S., Tarantola, A., Kennett, B.L.N., 1991. An alternative strategy for the non-linear inversion of seismic waveforms, Geophys. Propsect., 39, 723726.Google Scholar
Sambridge, M.S., 1999. Geophysical inversion with the neighbourhood algorithm: I. Searching a parameter space, Geophys. J. Int., 138, 479494.Google Scholar
Sambridge, M.S., Gallagher, K., Jackson, A., Rickwood, P., 2006. Trans-dimensional inverse problems, model comparison, and the evidence, Geophys. J. Int., 167, 528542.Google Scholar
Santosa, F., Symes, W.W., 1988. Computation of the Hessian for least-squares solutions of inverse problems of reflection seismology, Inverse Problems, 4, 211233.Google Scholar
Sato, H., Fehler, M.C., Maeda, T., 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth, 2nd edition, Springer, Heidelberg.Google Scholar
Saygin, E., Kennett, B.L.N., 2010. Ambient noise tomography for the Australian Continent, Tectonophysics, 481, 116125.CrossRefGoogle Scholar
Saygin, E., Kennett, B.L.N., 2012. Crustal structure of Australia from ambient seismic noise tomography, J. Geophys. Res., 117, B01304.Google Scholar
Saygin, E., McQueen, H., Hutton, L., Kennett, B.L.N., Lister, G., 2013. Structure of the Mt. Isa region from seismic ambient noise tomography, Austral. J. Earth Sci., 60, 707–718.Google Scholar
Saygin, E., Kennett, B.L.N., 2019. Retrieval of interstation local body waves from teleseismic coda correlations, J. Geophys. Res. Solid Earth, 124, 29572969.Google Scholar
Schaeffer, A.J., Lebedev, S., 2013. Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417449.CrossRefGoogle Scholar
Schimmel, M., Paulssen, H., 1997. Noise reduction and detection of weak, coherent signals through phase-weighted stacks, Geophys. J. Int., 130, 497–505.Google Scholar
Schmandt, B., Clayton, R., 2013. Analysis of P-waves with a 5200-station array in Long Beach, California: evidence for abrupt boundary for Inner Borderland rifting, J. Geophys. Res., 118, 119.Google Scholar
Schmerr, N., 2012. The Gutenberg discontinuity: melt at the Lithosphere–Asthenosphere boundary, Science, 335, 14801483.CrossRefGoogle ScholarPubMed
Schultz, P.S., 1982. A method for direct estimation of interval velocities, Geophysics, 47, 16571671.CrossRefGoogle Scholar
Schuster, G., 2009. Seismic Interferometry, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sens-Schönfelder, C., Snieder, R., Stähler, S.C., 2015. The lack of equipartitioning in global body wave coda, Geophys. Res. Lett., 42, 74837489.Google Scholar
Sens-Schönfelder, C., Brenguier, F., 2018. Noise-based monitoring, 267–301, in Seismic Ambient Noise, eds. Nakata, N., Gualtieri, L., Fichtner, A., Cambridge University Press, Cambridge.Google Scholar
Sereno, T.J., Orcutt, J.A., 1985. Synthesis of realistic oceanic Pn wavetrains, J. Geophys. Res., 90, 12 755–12 776.Google Scholar
Shanno, D.F., 1970. Conditioning of quasi-Newton methods for function minimization, Math. Comp., 24, 647656.CrossRefGoogle Scholar
Shapiro, N.M., Campillo, M., Stehly, L., Ritzwoller, M.H., 2005. High resolution surface-wave tomography from ambient seismic noise. Science, 307, 16151618.Google Scholar
Shapiro, N., 2019. Applications with surface waves extracted from ambient seismic noise, 218–238, in Seismic Ambient Noise, eds. Nakata N., Gualtieri L., Fichtner A., Cambridge University Press, Cambridge.Google Scholar
Shearer, P.M., Hedlin, M.A.H., Earle, P.S., 1998. PKP and PKKP precursor observations: Implications for the small-scale structure of the deep mantle and core, in: The Core-Mantle Boundary Region, AGU Geodynamics Monograph 28, 3755.Google Scholar
Shearer, P.M., Earle, P.S., 2008. Observing and modeling elastic scattering in the deep Earth. Advances in Geophysics, 50, 167193.Google Scholar
Shearer, P.M., Rychert, C.A., Liu, Q., 2011, On the visibility of the inner-core shear wave phase PKJKP at long periods, Geophys. J. Int., 185, 13791383.Google Scholar
Shearer, P.M., 2017. Deep Earth structure: Seismic scattering in the deep Earth. Treatise on Geophysics Vol. I (second edition), 759–787, Elsevier, Amsterdam,Google Scholar
Shen, W., Ritzwoller, M.H., 2016. Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res. Solid Earth, 121, 43064342.Google Scholar
Shintaku, N., Forsyth, D.W., Hajewski, C.J., Weeraratne, D.S., 2014. Pn anisotropy in Mesozoic western Pacific lithosphere, J. Geophys. Res. Solid Earth, 119, 30503063.Google Scholar
Shirzad, T., Shomali, Z.-H., 2015. Extracting seismic body and Rayleigh waves from the ambient seismic noise using the rms-stacking method, Seism. Res. Lett., 86, 18.Google Scholar
Shito, A., Suetsugu, D., Furumura, T., Sugioka, H., Ito, A., 2013. Small scale heterogeneities in the oceanic lithosphere inferred from guided waves, Geophys. Res. Lett., 40, 17081712.Google Scholar
Sieminski, A., Trampert, J., Tromp, J., 2009. Principal component analysis of anisotropic finite-frequency kernels, Geophys. J. Int., 179, 11861198.Google Scholar
Sigloch, K., Nolet, G., 2006. Measuring finite-frequency body wave amplitudes and travel times, Geophys. J. Int., 167, 271287.Google Scholar
Sippl, C., 2016. Moho geometry along a north-south passive seismic transect through Central Australia, Tectonophysics, 676, 5669.Google Scholar
Sippl, C., Brisbout, L., Spaggiari, C., Gessner, K., Tkalčić, H., Kennett, B.L.N., Murdie, R., 2017a. Crustal structure of a Proterozoic craton boundary: East Albany-Fraser Orogen, Western Australia, imaged with passive seismic and gravity anomaly data, Precambrian Res., 296, 7892.CrossRefGoogle Scholar
Sippl, C., Kennett, B.L.N., Tkalčić, H., Gessner, K., Spaggiari, C., 2017b. Crustal surface-wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings, Geophys. J. Int., 210, 16411651.Google Scholar
Slob, E., Wapenaar, K., Broggini, F., Snieder, R., 2014. Seismic reflector imaging using internal multiples with Marchenko-type equations, Geophysics, 79, S63–S76.Google Scholar
Snieder, R., 1986. 3-D linearized scattering of surface waves and a formalism for surface wave tomography, Geophys. J. Astr. Soc., 84, 581605.Google Scholar
Snieder, R., 2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E., 69, 046610.Google Scholar
Snieder, R., Van Wijk, K., Haney, M., Calvert, R., 2008. Cancellation of spurious arrivals in Green’s function extraction and the generalized optical theorem, Phys. Rev. E, 78, 18.Google Scholar
Snieder, R., Sens-Schönfelder, C., 2015. Seismic interferometry and stationary phase at caustics, J. Geophys. Res. Solid Earth, 120, 43334343.Google Scholar
Snieder, R. Duran, A., Obermann, A., 2019. Locating velocity changes in elastic media with coda wave interferometry, 188-217, in Seismic Ambient Noise, eds. Nakata, N., Gualtieri, L., Fichtner, A., Cambridge University Press, Cambridge.Google Scholar
Soldait, G., Boschi, L., Piersanti, A., 2006. Global seismic tomography and modern parallel computers, Ann. Geophys., 49, 977986.Google Scholar
Soomro, R.A., Weidle, C., Cristiano, L., Lebedev, S., Meier, T., PASSEQ Working Group, 2016. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements, Geophys. J. Int., 204, 517534.Google Scholar
Spakman, W., Wortel, M.J.R., Vlaar, N.J., 1988. The Hellenic subduction zone: a tomographic image and its geodynamic implications, Geophys. Res. Lett., 15, 6063.Google Scholar
Stehly, L., Campillo, M., Froment, B., Weaver, R.L., 2008. Reconstructing Green’s function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res., 113, B11306.Google Scholar
Stehly, L., Fry, B., Campillo, M., Shapiro, N., Guilbert, J., Boschi, L., Giardini, D, 2009. Tomography of the Alpine region from observations of seismic ambient noise, Geophys. J. Int., 178, 338350.Google Scholar
Sun, D., Miller, M.S., Piana, Agostinetti N., Asimow, P., Li, D., 2014. High frequency waves and slab structures beneath Italy, Earth Planet. Sci. Lett., 391, 212223.Google Scholar
Sun, W., Kennett, B.L.N., 2016. Receiver structure from teleseisms: Autocorrelation and cross correlation, Geophys. Res. Lett., 43, 6234–6242,Google Scholar
Sun, W., Fu, L.-Y., Saygin, E., Zhao, L., 2018. Insights into layering in the cratonic lithosphere beneath Western Australia, J. Geophys. Res. Solid Earth, 123, 14051418.Google Scholar
Takemura, S., Maeda, T., Furumura, T., Obara, K., 2016. Constraining the source location of the 30 May 2015 (Mw7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: Occurrence of deep-focus earthquake at the bottom of a subducting slab, Geophys. Res. Lett., 43, 42974302.Google Scholar
Tanimoto, T., Um, J., 1999. Cause of continuous oscillations of the Earth, J. Geophys. res., 104, 28 723–28 739.Google Scholar
Tanimoto, T., 2008. Normal-mode solution for the seismic noise cross-correlation method, Geophys. J. Int., 175, 11691175.Google Scholar
Tape, C., Liu, Q., Maggi, A., Tromp, J., 2010. Seismic tomography of the southern California crust based upon spectral-element and adjoint methods, Geophys. J. Int., 180, 433462.Google Scholar
Tarantola, A., Valette, B., 1982. Generalized nonlinear inverse problems solved using the least-squares criterion, Rev. Geophys., 20, 219232.Google Scholar
Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 12591266.Google Scholar
Tarantola, A., 1988. Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation, Pure Appl. Geophys., 128, 365399.Google Scholar
Tatham, R.S., Stoffa, P./L., 1976. Vp/Vs ; a potential hydrocarbon indicator Geophysics, 41, 837–849Google Scholar
Tatham, R.H., Goolsbee, D.V., 1984. Separation of S-wave and P-wave reflections offshore western Florida, Geophysics, 49, 493508.Google Scholar
Tauzin, B., Bodin, T., Debayle, E., Perrillat, J.-P., Reynard, B., 2016. Multi-mode conversion imaging of the subducted Gorda and Juan de Fuca plates below the North American continent, Earth Planet. Sci. Lett., 440, 135146.Google Scholar
Tauzin, B., Pham, T.-S., Tkalčić, H., 2019. Receiver functions from seismic interferometry: A practical guide, Geophys. J. Int., 217, 124.Google Scholar
Thomas, C., Kendall, J.-M., Helffrich, G., 2009. Probing two low-velocity regions with PKP b-caustic amplitudes and scattering. Geophys. J. Int., 178, 503512.Google Scholar
Thompson, D.A., Rawlinson, N., Tkalčić, H., 2019. Testing the limits of virtual deep seismic sounding via new crustal thickness estimates of the Australian continent, Geophys. J. Int., 218, 787800.Google Scholar
Thomson, C.J., 2012. On the space-time domain form of the reflection operator for a simple flat-lying interface, Geophys. Prospect., 60, 4963.Google Scholar
Thrastarson, S., van Driel, M., Krischer, L., Boehm, C., Afanasiev, M., van Herwaarden, D.-P., Fichtner, A., 2020. Accelerating numerical wave propagation by wavefield-adapted meshes, Part II: Full-waveform inversion, Geophys. J. Int., 221, 1591–1604Google Scholar
Thybo, H., 2008. The heterogeneous upper mantle low velocity zone, Tectonophysics, 416, 5379.Google Scholar
Tibuleac, I.M., von Seggern, D., 2012. Crust-mantle boundary reflectors in Nevada from ambient seismic noise autocorrelations, Geophys. J. Int., 189, 493500.Google Scholar
Tkalčić, H., Flanagan, M., Cormier, V.F., 2006. Observations of near-podal P ′ P′ precursors: evidence for back scattering from the 150–220 km zone in Earth’s upper mantle, Geophys. Res. Lett., 33, L03305.Google Scholar
Tkalčić, H., Cormier, V.F., Kennett, B.L.N., He, K., 2010. Steep reflections from the earth’s core reveal small-scale heterogeneity in the upper mantle, Phys. Earth Planet. Inter., 178, 8091,Google Scholar
Tkalčić, H., 2015. The Inner Core, Cambridge University Press, Cambridge.Google Scholar
Tkalčić, H., Pham, T.-S., 2018. Shear properties of the Earth’s inner core revealed by a detection of J waves in global correlation wavefield, Science, 362, 329332.Google Scholar
Tonegawa, T., Nishida, K., Watanabe, T., Shiomi, M., 2009. Seismic interferometry of teleseismic S-wave coda for retrieval of body waves: An application to the Philippine Sea slab underneath the Japanese Islands, Geophys. J. Int., 178, 15741586.Google Scholar
Trampert, J., Fichtner, A., Ritsema, J., 2013. Resolution tests revisited: The power of random numbers, Geophys. J. Int., 192, 676680.Google Scholar
Tromp, J., Tape, C., Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int., 160, 195216.Google Scholar
Tromp, J., Luo, Y., Hanasoge, S., Peter, D., 2010. Noise cross-correlation sensitivity kernels, Geophys. J. Int., 183, 791819.Google Scholar
Tromp, J., Bachmann, E., 2019. Source encoding for adjoint tomography, Geophys. J. Int., 218, 20192044.Google Scholar
Trorey, A.W., 1970. A simple theory for seismic diffractions, Geophysics, 35, 762784.CrossRefGoogle Scholar
Tsai, V.C., Moschetti, M.P., 2010. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results, Geophys. J. Int., 182, 454460.Google Scholar
Tseng, T.-L., Chen, W.-P., Nowack, R.L., 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles, Geophys. Res. Lett., 36, L24304.CrossRefGoogle Scholar
Ursin, B., 1983. Review of elastic and electromagnetic wave propagation in horizontally layered media, Geophysics, 48, 10631081.Google Scholar
Utsu, T., 1966. Regional difference in absorption of seismic waves in the upper mantle as inferred from abnormal distribution of seismic intensities, J. Fac. Sci. Hokkaido Univ., Ser. VII, 2, 359–374.Google Scholar
Vaccari, F., Gregersen, S., Furlan, M., Panza, G.F., 1989. Synthetic seismograms in laterally heterogeneous anelastic media by modal summation of P–SV waves, Geophys. J. Int., 99, 285295.Google Scholar
Valentine, A. P., Woodhouse, J. H., 2010. Reducing errors in seismic tomography: Combined inversion for sources and structure, Geophys. J. Int., 180, 847857.Google Scholar
Van Avendonk, H.J.A., Harding, A.J., Orcutt, J.A., McClain, J.S., 2001. Contrast in crustal structure across the Clipperton transform fault from travel time tomography. J. Geophys. Res., 106, 10 961–10981.Google Scholar
VanDecar, J.C., Crosson, R.S., 1990. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, Bull. Seism. Soc. Am., 80, 150169.Google Scholar
van der Hilst, R., Kennett, B., Christie, D., Grant, J., 1994. Project Skippy explores lithosphere and mantle beneath Australia, EOS, Transactions AGU, 177181.Google Scholar
van der Hilst, R.D., Widiyantoro, S., Engdahl, E.R., 1997. Evidence for deep mantle circulation from global tomography, Nature, 386, 578584.Google Scholar
van der Neut, J., Vasconcelos, I., Wapenaar, K., 2015. On Green’s function retrieval by iterative substitution of the coupled Marchenko equations, Geophys. J. Int., 203, 792813.Google Scholar
Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan subducted slabs under India, Earth Planet. Sci. Lett., 171, 720.Google Scholar
van Driel, M., Boehm, C., Krischer, L., Afanasiev, M., 2020. Accelerating numerical wave propagation using wavefield-adapted meshes, Part I: Forward and adjoint modelling, Geophys. J. Int., 221, 15801590.Google Scholar
van Herwaarden, D.-P., Boehm, C., Afanasiev, M., Thrastarson, S., Krischer, L., Trampert, J., Fichtner, A., 2020. Accelerated full-waveform inversion using dynamic mini-batches, Geophys. J. Int., 221, 14271438.Google Scholar
van Leeuwen, T., Mulder, W.A., 2010. A correlation-based misfit criterion for wave-equation traveltime tomography, Geophys. J. Int., 182, 1383–1394.Google Scholar
van Leeuwen, T., Herrmann, F. J., 2013. Fast waveform inversion without source encoding, Geophys. Pros., 61, 1019.Google Scholar
van Vleck, J.H., Middleton, D., 1966. The spectrum of clipped noise, Proc. IEEE, 54, 219.Google Scholar
Vered, M., BenMenahem, A., 1974. Application of synthetic seismograms to the study of low magnitude earthquakes and crustal structure in the Northern Red Sea region, Bull. Seism. Soc. Am., 64, 12211237.Google Scholar
Verschuur, D., 2006. Seismic Multiple Removal Techniques: Past, Present and Future, EAGE, Houten, Netherlands.Google Scholar
Vidale, J.E., Earle, P.S., 2000. Fine-scale heterogeneity in the Earth’s inner core, Nature, 404, 273275.Google Scholar
Vinnik, L.P., 1977. Detection of waves converted from P to SV in the mantle, Phys. Earth. Planet. Inter., 15, 3945.Google Scholar
Virieux, J., Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1–WCC26.Google Scholar
Wathelet, M., 2008. An improved neighborhood algorithm: Parameter conditions and dynamic scaling, Geophys. Res. Lett., 35, L09301.CrossRefGoogle Scholar
Walker, D.A., Sutton, G.H., 1971. Oceanic mantle phases recorded on hydrophones in the 65–78.North Western Pacific at distances between 9◦ and 40◦ , Bull. Seism. Soc. Am., 61,Google Scholar
Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., Fichtner, A., 2020. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain, Nat. Comm., 11, 2436.CrossRefGoogle ScholarPubMed
Wang, J., Wu, G., Chen, X., 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data, J. Geophys. Res. Solid Earth, 124, 37083723.Google Scholar
Wang, T., Song, X., Xia, H.H., 2015. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda. Nature Geosci., 8, 224227.Google Scholar
Wang, Z., Dahlen, F.A., 1995. Validity of surface-wave ray theory on a laterally heterogeneous earth, Geophys. J. Int., 123, 757773.Google Scholar
Wapenaar, K., 2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93, 254301.Google Scholar
Wapenaar, K., Thorbecke, J., Draganov, D., 2004. Relations between reflection and transmission responses of three-dimensional inhomogeneous media, Geophys. J. Int., 156, 179194.Google Scholar
Wapenaar, K., Fokkema, J., 2006. Green’s function representations for seismic interferometry, Geophysics, 71, SI33–SI46.Google Scholar
Wapenaar, K.,Thorbecke, J., van Der Neut, J., Broggini, F. , Slob, E., Snieder, 2014. Marchenko imaging, Geophysics, 79, WA39–WA57.Google Scholar
Warner, M., Ll, Guasch., 2015. Adaptive waveform inversion: Theory, Geophysics, 61, RR429–R445.Google Scholar
Waszek, L., Deuss, A., 2011. Distinct layering in the hemispherical seismic velocity structure of Earth’s upper inner core, J. Geophys. Res., 116, B12313.Google Scholar
Webb, S.C., 2008. The Earth’s ‘hum’: the excitation of Earth normal modes by ocean waves. Geophys. J. Int., 174, 542566.Google Scholar
Widiyantoro, S., Kennett, B.L.N., van der Hilst, R.D., 1999. Seismic tomography with P and S data reveals lateral variations in the rigidity of deep slabs, Earth. Planet. Sci. Lett. 173, 91100.Google Scholar
Widiyantoro, S., Gorbatov, A., Kennett, B.L.N., Fukao, Y., 2000. Improving global shear wave traveltime tomography using three-dimensional ray tracing and iterative inversion, Geophys. J. Int. 141, 747758.Google Scholar
Willis, J.R., 1981. Variational and related methods for the overall properties of composites, Advances in Applied Mechanics, 21, 178.Google Scholar
Wittlinger, G., Vergne, J., Tapponnier, P., Farra, V., Poupinet, G., Jiang, M., Su, H., Herquel, G., Paul, A., 2004. Teleseismic imaging of subducting lithosphere and Moho offsets beneath Western Tibet, Earth Planet. Sci. Lett., 221, 117130.Google Scholar
Wolpert, D.H., Macready, W.G., 1997. No Free Lunch Theorems for optimization, IEEE Trans. Evolutionary Comp., 1, 6782.Google Scholar
Woodhouse, J.H., 1974. Surface waves in a laterally varying layered structure, Geophys. J. R. Astr. Soc., 37, 461490.Google Scholar
Woodard, M.F., 1997. Implications of localized, acoustic absorption for heliotomographic analysis of sunspots, Astrophys. J., 485, 890894.Google Scholar
Wuestefeld, A., Wilks, M., 2019. How to twist and turn a fibre: Performance modelling for optimum DAS acquisitions, The Leading Edge, 38, 226231.Google Scholar
Xia, H.H., Song, X., Wang, T., 2016. Extraction of triplicated PKP phases from noise correlations, Geophys. J. Int., 205, 499508.Google Scholar
Xie, J., Nuttli, O., 1988. Interpretation of high frequency coda at large distances: stochastic modelling and method of inversion, Geophys. J. Int., 93, 579595.Google Scholar
Yanovskaya, T.B., 1984. Solution of the inverse problem of seismology for laterally inhomogeneous media, Geophys. J. R. Astr. Soc., 79, 293304,Google Scholar
Yokoi, T., Margaryan, S., 2008. Consistency of the spatial autocorrelation method with seismic interferometry and its consequence, Geophys. Prospect., 56, 435451.Google Scholar
Yomogida, K., 1992. Fresnel zone inversion for lateral heterogeneities in the Earth, Pure Appl. Geophys., 138, 391406.Google Scholar
Yoshizawa, K., Kennett, B.L.N., 2002a. Nonlinear waveform inversion for surface waves with a neighbourhood algorithm – application to multi-mode dispersion measurements, Geophys. J. Int., 149, 440–453.Google Scholar
Yoshizawa, K., Kennett, B.L.N., 2002b, Determination of the influence zone for surface wave paths, Geophys. J. Int., 149, 118–133.Google Scholar
Yoshizawa, K., Kennett, B.L.N., 2005. Sensitivity kernels for finite-frequency surface waves, Geophys. J. Int., 162, 910926.Google Scholar
Yoshizawa, K., 2014. Radially anisotropic 3-D shear wave structure of the Australian lithosphere and asthenosphere from multi-mode surface waves, Phys. Earth Planet. Inter., 235, 3348.Google Scholar
Yoshizawa, K., Kennett, B.L.N., 2015. The lithosphere–asthenosphere transition and radial anisotropy beneath the Australian continent, Geophys. Res. Lett., 42, 38393846.Google Scholar
Young, M., Rawlinson, N., Arroucau, P., Reading, A.M., Tkalčić, H., 2011. High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania’s tectonic past, Geophys. Res. Lett., 38, L13313.Google Scholar
Yu, C.-Q., Chen, W.-P., van der Hilst, R.D., 2013. Removing source-side scattering for virtual deep seismic sounding (VDSS), Geophys. J. Int., 195, 19321941.Google Scholar
Yuan, X., Kind, R., Li, X., Wang, R., 2006. The S receiver functions: synthetics and data example, Geophys. J. Int., 165, 555564.Google Scholar
Zhan, Z., Ni, S., Helmberger, D., Clayton, R.W., 2010. Retrieval of Moho reflected shear wave arrivals from ambient seismic noise, Geophys. J. Int., 182, 408420.Google Scholar
Zhang, J., Yang, X., 2013. Extracting surface wave attenuation from seismic noise using correlation of the coda of correlation, J. Geophys. Res., 118, 21912205.Google Scholar
Zhou, Y., Dahlen, F.A., Nolet, G., 2004. Three-dimensional sensitivity kernels for surface wave observables, Geophys. J. Int., 158, 142168.Google Scholar
Zhou, W., Paulssen, H., 2017. P and S velocity structure in the Groningen gas reservoir from noise interferometry, Geophys. Res. Lett., 44, 11 785–11 791.Google Scholar
Zhu, H., Bozdağ, E., Duffy, T.S., Tromp, J., 2013. Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle, Earth Planet. Sci. Lett., 381, 111.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×