Book contents
- Exergy Analysis for Energy Conversion Systems
- Exergy Analysis for Energy Conversion Systems
- Copyright page
- Dedication
- Contents
- About the Author
- Preface
- Symbols
- Abbreviations
- 1 Introduction
- 2 Exergy
- 3 Energy Conversion Systems and Processes
- 4 Exergy Consumption and Conservation
- 5 Exergy in Biological Systems
- 6 Ecosystems, the Environment, and Sustainability
- 7 Optimization and Exergoeconomics
- Index
- References
1 - Introduction
Published online by Cambridge University Press: 19 March 2021
- Exergy Analysis for Energy Conversion Systems
- Exergy Analysis for Energy Conversion Systems
- Copyright page
- Dedication
- Contents
- About the Author
- Preface
- Symbols
- Abbreviations
- 1 Introduction
- 2 Exergy
- 3 Energy Conversion Systems and Processes
- 4 Exergy Consumption and Conservation
- 5 Exergy in Biological Systems
- 6 Ecosystems, the Environment, and Sustainability
- 7 Optimization and Exergoeconomics
- Index
- References
Summary
The use of energy has defined our civilization and governs our lives. Throughout the day and night modern humans consume enormous quantities of energy resources for: food preparation; transportation; lighting, heat, ventilation and air-conditioning of buildings; entertainment; and a myriad other applications that define modern life. A gigantic global energy industry transports and inconspicuously transforms the energy resources to convenient forms (gasoline, diesel, electricity) that are vital to the functioning of the modern society. This introductory chapter surveys the types of the global primary energy sources, how they are transformed to useful energy, and how they are used. The chapter introduces the two laws of thermodynamics that govern the conversion of energy from one form to another; explains the methodology of thermodynamics, which is essential for the understanding of energy conversion processes; and delineates the limitations on energy conversion. The thermodynamic cycles for the generation of power and refrigeration are reviewed and the thermodynamic efficiencies of the cycles and energy conversion equipment (turbines, compressors, solar cells, etc.) are defined.
Keywords
- Type
- Chapter
- Information
- Exergy Analysis for Energy Conversion Systems , pp. 1 - 24Publisher: Cambridge University PressPrint publication year: 2021