Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T19:40:00.994Z Has data issue: false hasContentIssue false

17 - Variation in Nutrient Availability for Aquatic Phototrophs and Its Ecological Consequences

from Part III - The Future

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Nutrients, frequently phosphorus and/or nitrogen, often limit aquatic primary productivity. The availability of nutrients required by phototrophs varies with chemical and biological species, site and season. A rapidly increasing, resource-demanding human population that uses water as a convenient waste-disposable system has caused widespread nutrient pollution leading to ‘eutrophication’. In conjunction with other multiple pressures such as climate change, this has altered the natural communities in an ecosystem, and caused biodiversity loss. It also causes a cascade of undesirable consequences for human use of water, including the growth of potentially toxic microalgal and macroalgal blooms, and deoxygenation leading to fish kills and the release of nutrients from the sediment to the water. Remediation, driven by legislation, is focused on limiting nutrient losses from agricultural systems while maintaining the ability to produce food sustainably and increasing nutrient capture in works treating domestic and industrial waste and the production of a circular economy for nutrients.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S. (1974). The biology and ultrastructure of phagotrophy in Ochromonas danica (Chrysophyceae: Chrysomonadida). Journal of General Microbiology 83: 2129.CrossRefGoogle Scholar
Albert, J. S., Destouni, G., Duke-Sylvester, S. M. et al. (2021). Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50: 8594.CrossRefGoogle ScholarPubMed
Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. (2012). Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science 4: 143176.CrossRefGoogle ScholarPubMed
Anderson, D. M., Glibert, P. M. & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25: 704726.CrossRefGoogle Scholar
Andresen, E., Peiter, E. & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany 69: 909954.CrossRefGoogle ScholarPubMed
Attayde, J. L. & Hansson, L. A. (1999). Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia 121: 4754.CrossRefGoogle ScholarPubMed
Azam, F., Fenchel, T., Field, J. G. et al. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257263.CrossRefGoogle Scholar
Barko, J. W., Gunnison, D. & Carpenter, S. R. (1991). Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany 41: 4165.CrossRefGoogle Scholar
Belzile, C., Vincent, W. F., Gibson, J. A. et al. (2001). Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the High Arctic. Canadian Journal of Fisheries and Aquatic Sciences 58: 24052418.CrossRefGoogle Scholar
Bergstrom, A. K. & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635643.CrossRefGoogle Scholar
Beusen, A. H. W. & Bouwman, A. F. (2022). Future projections of river nutrient export to the global coastal ocean show persisting nitrogen and phosphorus distortion. Frontiers in Water 4: 893585.CrossRefGoogle Scholar
Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H. et al. (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13: 24412451.CrossRefGoogle Scholar
Beusen, A. H. W., Doelman, J. C., Van Beek, L. P. H. et al. (2022). Exploring river nitrogen and phosphorus loading and export to global coastal waters in the shared socio-economic pathways. Global Environmental Change 72: 102426.CrossRefGoogle Scholar
Boyd, P. W., Jickells, T., Law, C. S. et al. (2007). Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 315: 612617.CrossRefGoogle ScholarPubMed
Brown, C. J., Saunders, M. I., Possingham, H. P. et al. (2014). Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Diversity and Distributions 20: 538546.CrossRefGoogle Scholar
Brownlie, W., Sutton, M. A., Heal, K. V. et al. (2022). The Our Phosphorus Future Report. https://doi.org/10.13140/RG.2.2.17834.08645.CrossRefGoogle Scholar
Brzezinski, M. A. (1985). The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology 21: 347357.CrossRefGoogle Scholar
Burger, D. F., Hamilton, D. P., Pilditch, C. A. et al. (2007). Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584: 1325.CrossRefGoogle Scholar
Burkholder, J. M., Tomasko, D. A. & Touchette, B. W. (2007). Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350: 4672.CrossRefGoogle Scholar
Carey, C. (2023). Causes and consequences of changing oxygen availability in lakes Inland Waters 13: 316–326.CrossRefGoogle Scholar
Carey, C. C., Hanson, P. C., Thomas, R. Q. et al. (2022). Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus sink in freshwaters. Global Change Biology 28: 48614881.CrossRefGoogle ScholarPubMed
Carpenter, S. R., Caraco, N. F., Correll, D. L. et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559568.CrossRefGoogle Scholar
Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. (2011). State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annual Review of Environment and Resources 36: 7599.CrossRefGoogle Scholar
Chambers, P. A., Prepas, E. E., Bothwell, M. L. et al. (1989). Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Canadian Journal of Fisheries and Aquatic Sciences 46: 435439.CrossRefGoogle Scholar
Charette, M. A., Gonneea, M. E., Morris, P. J. et al. (2007). Radium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom. Deep Sea Research Part II: Topical Studies in Oceanography 54: 19891998.CrossRefGoogle Scholar
Cloern, J. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223253.CrossRefGoogle Scholar
Coale, K. H., Johnson, K. S., Fitzwater, S. E. et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495501.CrossRefGoogle ScholarPubMed
Conley, D. J., Kilham, S. S. & Theriot, E. (1989). Differences in silica content between marine and fresh-water diatoms. Limnology and Oceanography 34: 205213.CrossRefGoogle Scholar
Cordell, D. & White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3: 20272049.CrossRefGoogle Scholar
Currie, H. A. & Perry, C. C. (2007). Silica in plants: Biological, biochemical and chemical studies. Annals of Botany 100: 13831389.CrossRefGoogle ScholarPubMed
Dai, Y., Yang, S., Zhao, D. et al. (2023). Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615: 280284.CrossRefGoogle ScholarPubMed
de-Bashan, L. E. & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research 38: 42224246.CrossRefGoogle ScholarPubMed
De’ath, G. & Fabricius, K. (2010). Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications 20: 840850.CrossRefGoogle ScholarPubMed
Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321: 926929.CrossRefGoogle ScholarPubMed
Dillon, P. J. & Rigler, F. H. (1974). Phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography 19: 767773.CrossRefGoogle Scholar
Dong, X. (2010). Using diatoms to understand climate-nutrient interactions in Esthwaite Water, England: evidence from observational and palaeolimnological records, University College London Retrieved from https://discovery.ucl.ac.uk/id/eprint/763095/1/763095.pdfGoogle Scholar
Dong, X., Bennion, H., Battarbee, R. W. et al. (2012a). A multiproxy palaeolimnological study of climate and nutrient impacts on Esthwaite Water, England over the past 1200 years. The Holocene 22: 107118.CrossRefGoogle Scholar
Dong, X., Bennion, H., Maberly, S. C. et al. (2012b). Nutrients exert a stronger control than climate on recent diatom communities in Esthwaite Water: Evidence from monitoring and palaeolimnological records. Freshwater Biology 57: 20442056.CrossRefGoogle Scholar
Drake, J. C. & Heaney, S. I. (1987). Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwater Biology 17: 513523.CrossRefGoogle Scholar
Elliott, J. A. (2010). The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16: 864876.CrossRefGoogle Scholar
Elser, J. J., Andersen, T., Baron, J. S., et al. (2009a). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835837.CrossRefGoogle Scholar
Elser, J. J., Bracken, M. E. S., Cleland, E. E. et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 11351142.CrossRefGoogle ScholarPubMed
Elser, J. J., Kyle, M., Steger, L. et al. (2009b). Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90: 30623073.CrossRefGoogle ScholarPubMed
Eom, H., Borgatti, D., Paerl, H. W. et al. (2017). Formation of low-molecular-weight dissolved organic nitrogen in predenitrification biological nutrient removal systems and its impact on eutrophication in coastal waters. Environmental Science and Technology 51: 37763783.CrossRefGoogle ScholarPubMed
Erisman, J. W., Sutton, M. A., Galloway, J. et al. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience 1: 636639.CrossRefGoogle Scholar
Evans, C. D., Monteith, D. T. & Harriman, R. (2001). Long-term variability in the deposition of marine ions at west coast sites in the UK Acid Waters Monitoring Network: Impacts on surface water chemistry and significance for trend determination. Science of the Total Environment 265: 115129.CrossRefGoogle ScholarPubMed
Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin 50: 125146.CrossRefGoogle ScholarPubMed
Fee, E. J., Hecky, R. E., Regehr, G. W. et al. (1994). Effects of lake size on nutrient availability in the mixed layer during summer stratification. Canadian Journal of Fisheries and Aquatic Sciences 51: 27562768.CrossRefGoogle Scholar
Ferber, L. R., Levine, S. N., Lini, A. et al. (2004). Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology 49: 690708.CrossRefGoogle Scholar
Filstrup, C. T. & Downing, J. A. (2017). Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters 7: 385400.CrossRefGoogle Scholar
Floener, L. & Bothe, H. (1980). Nitrogen fixation in Rhopalodia gibba, a diatom containing blue-greenish inclusions symbiotically. In: Schenk, H. E. A. & Schwemmler, W. (eds.) Endosymbiosis and Cell Biology, De Gruyter, Berlin, pp. 541552.CrossRefGoogle Scholar
Foley, B., Jones, I. D., Maberly, S. C. et al. (2012). Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshwater Biology 57: 278289.CrossRefGoogle Scholar
Francoeur, S. N., Smith, R. A. & Lowe, R. L. (1999). Nutrient limitation of algal biomass accrual in streams: Seasonal patterns and a comparison of methods. Journal of the North American Benthological Society 18: 242260.CrossRefGoogle Scholar
Gächter, R. & Wehrli, B. (1998). Ten years of artificial mixing and oxygenation: No effect on the internal phosphorus loading of two eutrophic lakes. Environmental Science and Technology 32: 36593665.CrossRefGoogle Scholar
Galloway, J. N., Dentener, F. J., Capone, D. G. et al. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry 70: 153226.CrossRefGoogle Scholar
Giordano, M., Norici, A. & Hell, R. (2005). Sulfur and phytoplankton: Acquisition, metabolism and impact on the environment. New Phytologist 166: 371382.CrossRefGoogle ScholarPubMed
Glass, J. B., Axler, R. P., Chandra, S. et al. (2012). Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology 3: Article 331.CrossRefGoogle ScholarPubMed
Godfray, H. C. J., Beddington, J. R., Crute, I. R. et al. (2010). Food security: The challenge of feeding 9 billion people. Science 327: 812818.CrossRefGoogle ScholarPubMed
Guilizzoni, P. (1991). The role of heavy metals and toxic amterials in the physiological ecology of submersed macrophytes. Aquatic Botany 41: 87109.CrossRefGoogle Scholar
Hamilton, D. P., Salmaso, N. & Paerl, H. W. (2016). Mitigating harmful cyanobacterial blooms: Strategies for control of nitrogen and phosphorus loads. Aquatic Ecology 50: 351366.CrossRefGoogle Scholar
Hampton, S. E., Izmest’Eva, L. R., Moore, M. V. et al. (2008). Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia: Warming of the world’s largest freshwater lake. Global Change Biology 14: 19471958.CrossRefGoogle Scholar
Hanson, J. M. & Leggett, W. C. (1982). Empirical prediction of fish biomass and yield. Canadian Journal of Fisheries and Aquatic Sciences 39: 257263.CrossRefGoogle Scholar
Harke, M. J., Steffen, M. M., Gobler, C. J. et al. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 420.CrossRefGoogle ScholarPubMed
Hein, L. & Leemans, R. (2012). The impact of first-generation biofuels on the depletion of the global phosphorus reserve. AMBIO 41: 341349.CrossRefGoogle ScholarPubMed
Holm-Nielsen, J. B., Al Seadi, T. & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology 100: 54785484.CrossRefGoogle ScholarPubMed
Hu, Z., Anderson, N. J., Yang, X. et al. (2014). Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology 20: 16141628.CrossRefGoogle Scholar
Huisman, J., Codd, G. A., Paerl, H. W. et al. (2018). Cyanobacterial blooms. Nature Reviews Microbiology 16: 471483.CrossRefGoogle ScholarPubMed
Ishangulyyev, R., Kim, S. & Lee, S. (2019). Understanding food loss and waste – why are we losing and wasting food? Foods 8: 297.CrossRefGoogle ScholarPubMed
James, C., Fisher, J. & Moss, B. (2003). Nitrogen driven lakes: The Shropshire and Cheshire meres? Archiv Fur Hydrobiologie 158: 249266.CrossRefGoogle Scholar
Jane, S. F., Hansen, G. J. A., Kraemer, B. M. et al. (2021). Widespread deoxygenation of temperate lakes. Nature 594: 6670.CrossRefGoogle ScholarPubMed
Jankowski, T., Livingstone, D. M., Bührer, H. et al. (2006). Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world. Limnology and Oceanography 51: 815819.CrossRefGoogle Scholar
Janse, J. H., Kuiper, J. J., Weijters, M. J. et al. (2015). GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environmental Science and Policy 48: 99114.CrossRefGoogle Scholar
Jansson, M., Berggren, M., Laudon, H., Jonsson, A., 2012. Bioavailable phosphorus in humic headwater streams in boreal Sweden. Limnology & Oceanography 57: 11611170.CrossRefGoogle Scholar
Jarvie, H. P., Sharpley, A. N., Flaten, D. et al. (2015). The pivotal role of phosphorus in a resilient water-energy-food security nexus. Journal of Environmental Quality 44: 10491062.CrossRefGoogle Scholar
Jarvie, H. P., Sharpley, A. N., Spears, B. et al. (2013). Water quality remediation faces unprecedented challenges from ‘Legacy Phosphorus’. Environmental Science and Technology 47: 89978998.CrossRefGoogle ScholarPubMed
Jensen, E. L., Clement, R., Kosta, A. et al. (2019). A new widespread subclass of carbonic anhydrase in marine phytoplankton. The ISME Journal 13: 20942106.CrossRefGoogle ScholarPubMed
Jeppesen, E., Peder Jensen, J., Søndergaard, M. et al. (2000). Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient: A detailed study of Danish lakes along a phosphorus gradient. Freshwater Biology 45: 201218.CrossRefGoogle Scholar
Jeppesen, E., Pekcan-Hekim, Z., Lauridsen, T. L. et al. (2006). Habitat distribution of fish in late summer: Changes along a nutrient gradient in Danish lakes. Ecology of Freshwater Fish 15: 180190.CrossRefGoogle Scholar
Jiang, S., Hua, H., Sheng, H. et al. (2019). Phosphorus footprint in China over the 1961–2050 period: Historical perspective and future prospect. Science of the Total Environment 650: 687695.CrossRefGoogle Scholar
Jing, X., Lin, S., Zhang, H. et al. (2017). Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLOS ONE 12: e0187837.CrossRefGoogle ScholarPubMed
Jones, I., George, G. & Reynolds, C. (2005). Quantifying effects of phytoplankton on the heat budgets of two large limnetic enclosures. Freshwater Biology 50: 12391247.CrossRefGoogle Scholar
Jones, R. I., Young, J. M., Hartley, A. M. et al. (1996). Light limitation of phytoplankton development in an oligotrophic lake – Loch Ness, Scotland. Freshwater Biology 35: 533543.CrossRefGoogle Scholar
Ju, X.-T., Xing, G.-X., Chen, X.-P. et al. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences 106: 30413046.CrossRefGoogle ScholarPubMed
Karl, D., Michaels, A., Bergman, B. et al. (2002). Dinitrogen fixation in the world’s oceans. Biogeochemistry 57: 4798.CrossRefGoogle Scholar
Karlsson, J., Bystrom, P., Ask, J. et al. (2009). Light limitation of nutrient-poor lake ecosystems. Nature 460: 506509.CrossRefGoogle ScholarPubMed
Kellogg, R. M., Moosburner, M. A., Cohen, N. R. et al. (2022). Adaptive responses of marine diatoms to zinc scarcity and ecological implications. Nature Communications 13: 1995.CrossRefGoogle ScholarPubMed
Kibriya, S. & Jones, J. I. (2007). Nutrient availability and the carnivorous habit in Utricularia vulgaris. Freshwater Biology 52: 500509.CrossRefGoogle Scholar
Kim, H., Takayama, K., Hirose, N. et al. (2019). Biological modulation in the seasonal variation of dissolved oxygen concentration in the upper Japan Sea. Journal of Oceanography 75: 257271.CrossRefGoogle Scholar
Kirk, J. T. O. (2010). Light and Photosynthesis in Aquatic Environments, 3rd ed. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Kleeberg, A. & Kohl, J.-G. (1999). Assessment of the long-term effectiveness of sediment dredging to reduce benthic phosphorus release in shallow Lake Müggelsee (Germany). Hydrobiologia 394: 153161.CrossRefGoogle Scholar
Krupke, A., Lavik, G., Halm, H. et al. (2014). Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean: Distribution of a consortium between UCYN-A and Haptophyta. Environmental Microbiology 16: 31533167.CrossRefGoogle Scholar
Lapointe, B. E., West, L. E., Sutton, T. T. et al. (2014). Ryther revisited: Nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. Journal of Experimental Marine Biology and Ecology 458: 4656.CrossRefGoogle Scholar
Larned, S. T. (1998). Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Marine Biology 132: 409421.CrossRefGoogle Scholar
Lassaletta, L., Billen, G., Garnier, J. et al. (2016). Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters 11: 095007.CrossRefGoogle Scholar
Le Corre, K. S., Valsami-Jones, E., Hobbs, P. et al. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology 39: 433477.CrossRefGoogle Scholar
Lee, K.-S., Park, S. R. & Kim, Y. K. (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology 350: 144175.CrossRefGoogle Scholar
Leles, S. G., Mitra, A., Flynn, K. J. et al. (2017). Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences 284: 20170664.CrossRefGoogle ScholarPubMed
Lund, J. W. G. (1950). Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum. Journal of Ecology 38: 114.CrossRefGoogle Scholar
Lürling, M. (2021). Grazing resistance in phytoplankton. Hydrobiologia 848: 237249.CrossRefGoogle Scholar
Lürling, M. & Mucci, M. (2020). Mitigating eutrophication nuisance: In-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia 847: 44474467.CrossRefGoogle Scholar
Maavara, T., Parsons, C. T., Ridenour, C. et al. (2015). Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences USA 112: 1560315608.CrossRefGoogle ScholarPubMed
Maberly, S. C., Barker, P. A., Stott, A. W. et al. (2013). Catchment productivity controls CO2 emissions from lakes. Nature Climate Change 3: 391394.CrossRefGoogle Scholar
Maberly, S. C., De Ville, M. M., Thackeray, S. J. et al. (2016). A survey of the status of the lakes of the English Lake District: The 2015 Lakes Tour. Report to United Utilities No. LA/NEC05369/1.Google Scholar
Maberly, S. C., King, L., Dent, M. M. et al. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology 47: 21362152.CrossRefGoogle Scholar
Maberly, S. C. & Madsen, T. V. (1990). Contribution of air and water to the carbon balance of Fucus spiralis. Marine Ecology Progress Series 62: 175183.CrossRefGoogle Scholar
Maberly, S. C., Pitt, J.-A., Davies, P. S. et al. (2020). Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters 10: 159172.CrossRefGoogle Scholar
Maberly, S. C., Van de Waal, D. B. & Raven, J. A. (2022). Phytoplankton growth and nutrients. In Encyclopedia of Inland Waters, 2nd ed. Elsevier, Amsterdam, pp. 130138.CrossRefGoogle Scholar
Machovina, B., Feeley, K. J. & Ripple, W. J. (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment 536: 419431.CrossRefGoogle ScholarPubMed
Mackay, E. B., Feuchtmayr, H., De Ville, M. M. et al. (2020). Dissolved organic nutrient uptake by riverine phytoplankton varies along a gradient of nutrient enrichment. Science of the Total Environment 722: 137837.CrossRefGoogle ScholarPubMed
Madsen, T. V. & Cedergreen, N. (2002). Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47: 283291.CrossRefGoogle Scholar
Malone, T. C. & Newton, A. (2020). The globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Frontiers in Marine Science 7: 670.CrossRefGoogle Scholar
Martin, J. H., Gordon, M. & Fitzwater, S. E. (1991). The case for iron. Limnology and Oceanography 36: 17931802.CrossRefGoogle Scholar
Martin, J. H. & Gordon, M. R. (1988). Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Research Part A. Oceanographic Research Papers 35: 177196.CrossRefGoogle Scholar
Martiny, A. C., Pham, C. T. A., Primeau, F. W. et al. (2013). Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience 6: 279283.CrossRefGoogle Scholar
Matthijs, H. C. P., Visser, P. M., Reeze, B. et al. (2012). Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research 46: 14601472.CrossRefGoogle Scholar
McCrackin, M. L., Jones, H. P., Jones, P. C. et al. (2017). Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta-analysis. Limnology and Oceanography 62: 507518.CrossRefGoogle Scholar
McGowan, S., Barker, P., Haworth, E. Y. et al. (2012). Humans and climate as drivers of algal community change in Windermere since 1850. Freshwater Biology 57: 260277.Google Scholar
Meis, S., Spears, B. M., Maberly, S. C. et al. (2012). Sediment amendment with Phoslock (R) in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation. Journal of Environmental Management 93: 185193.CrossRefGoogle Scholar
Metson, G. S., Brownlie, W. J. & Spears, B. M. (2022). Towards net-zero phosphorus cities. Npj Urban Sustainability 2: 30. https://doi.org/10.1038/s42949–022–00076–8.CrossRefGoogle Scholar
Metson, G. S., Cordell, D. & Ridoutt, B. (2016). Potential impact of dietary choices on phosphorus recycling and global phosphorus footprints: The case of the average Australian city. Frontiers in Nutrition 3: 35. https://doi.org/10.3389/fnut.2016.00035.CrossRefGoogle ScholarPubMed
Michelou, V. K., Lomas, M. W. & Kirchman, D. L. (2011). Phosphate and adenosine-5’-triphosphate uptake by cyanobacteria and heterotrophic bacteria in the Sargasso Sea. Limnology and Oceanography 56: 323332.CrossRefGoogle Scholar
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis; A Report of the Millennium Ecosystem Assessment. Island Press, Washington, DC.Google Scholar
Mogollón, J. M., Bouwman, A. F., Beusen, A. H. W. et al. (2021). More efficient phosphorus use can avoid cropland expansion. Nature Food 2: 509518.CrossRefGoogle ScholarPubMed
Molinari, B., Stewart-Koster, B., Adame, M. F. et al. (2021). Relationships between algal primary productivity and environmental variables in tropical floodplain wetlands. Inland Waters 11: 180190.CrossRefGoogle Scholar
Moore, C. M., Mills, M. M., Arrigo, K. R. et al. (2013). Processes and patterns of oceanic nutrient limitation. Nature Geoscience 6: 701710.CrossRefGoogle Scholar
Morel, F. M. M., Lam, P. J. & Saito, M. A. (2020). Trace metal substitution in marine phytoplankton. Annual Review of Earth and Planetary Sciences 48: 491517.CrossRefGoogle Scholar
Mortimer, C. (1941). The exchange of dissolved substances between mud and water in lakes I and II. Journal of Ecology 29: 280329.CrossRefGoogle Scholar
Mosley, L. M. (2015). Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews 140: 203214.CrossRefGoogle Scholar
Myrstener, M., Fork, M. L., Bergström, A.-K. et al. (2022). Resolving the drivers of algal nutrient limitation from boreal to arctic lakes and streams. Ecosystems 25: 16821699.CrossRefGoogle Scholar
Njagi, D. M., Routh, J., Odhiambo, M. et al. (2022). A century of human-induced environmental changes and the combined roles of nutrients and land use in Lake Victoria catchment on eutrophication. Science of the Total Environment 835: 155425.CrossRefGoogle Scholar
Norici, A., Gerotto, C., Beardall, J. et al. (2022). Environmental variability and its control of productivity. In: Maberly, S. C. & Gontero, B. (eds.) Blue Planet, Red and Green Photosynthesis: Productivity and Carbon Cycling in Aquatic Ecosystems ISTE-WILEY, London, pp. 225271.CrossRefGoogle Scholar
O’Hare, M. T., Stillman, R. A., McDonnell, J. et al. (2007). Effects of mute swan grazing on a keystone macrophyte. Freshwater Biology 52: 24632475.CrossRefGoogle Scholar
Paerl, H. W. (1997). Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrient sources. Limnology and Oceanography 42: 11541165.CrossRefGoogle Scholar
Paerl, H. W., Gardner, W. S., Havens, K. E. et al. (2016a). Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54: 213222.CrossRefGoogle ScholarPubMed
Paerl, H. W., Scott, J. T., McCarthy, M. J. et al. (2016b). It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science and Technology 50: 1080510813.CrossRefGoogle ScholarPubMed
Pearsall, W. H. (1921). The development of vegetation in the English lakes, considered in relation to the general evolution of glacial lakes and rock basins. Proceedings of the Royal Society of London. Series B 92: 259284.Google Scholar
Pedrozo, F., Kelly, L., Diaz, M. et al. (2001). First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia 452: 129137.CrossRefGoogle Scholar
Peierls, B. L. & Paerl, H. W. (1997). Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnology and Oceanography 42: 18191823.CrossRefGoogle Scholar
Peñuelas, J., Poulter, B., Sardans, J. et al. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications 4: 2934.CrossRefGoogle ScholarPubMed
Phillips, G. L., Eminson, D. & Moss, B. (1978). A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103126.CrossRefGoogle Scholar
Phillips, G., Pietilainen, O. P., Carvalho, L. et al. (2008). Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213226.CrossRefGoogle Scholar
Pikosz, M., Messyasz, B. & Gąbka, M. (2017). Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland. Ecological Indicators 74: 19.CrossRefGoogle Scholar
Polyakov, I. V., Tikka, K., Haapala, J. et al. (2022). Depletion of oxygen in the Bothnian Sea since the mid-1950s. Frontiers in Marine Science 9: 917879.CrossRefGoogle Scholar
Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B 363: 447465.CrossRefGoogle ScholarPubMed
Qin, L.-Z., Suonan, Z., Kim, S. H. et al. (2021). Growth and reproductive responses of the seagrass Zostera marina to sediment nutrient enrichment. ICES Journal of Marine Science 78: 11601173.CrossRefGoogle Scholar
Qin, B., Zhou, J., Elser, J. J. et al. (2020). Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environmental Science & Technology 54: 31913198.CrossRefGoogle ScholarPubMed
Quigg, A., Finkel, Z. V., Irwin, A. J. et al. (2003). The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425: 291294.CrossRefGoogle ScholarPubMed
Quigg, A., Irwin, A. J. & Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society B: Biological Sciences 278: 526534.CrossRefGoogle ScholarPubMed
Quinlan, R., Filazzola, A., Mahdiyan, O. et al. (2021). Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography 66: 392404.CrossRefGoogle Scholar
Ratti, S., Knoll, A. H. & Giordano, M. (2011). Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans?: Sulfate and evolution of chlorophyll a+c phytoplankton. Geobiology 9: 301312.CrossRefGoogle ScholarPubMed
Rattray, M. R., Howard-Williams, C. & Brown, J. M. A. (1991). Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. Aquatic Botany 40: 225237.CrossRefGoogle Scholar
Raven, J. A. (1983). The transport and function of silicon in plants. Biological Reviews 58: 179207.CrossRefGoogle Scholar
Raven, J. A. (1997). Phagotrophy in phototrophs. Limnology and Oceanography 42: 198205.CrossRefGoogle Scholar
Raven, J. A., Caldeira, K., Elderfield, H. et al. (2005). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide. Royal Society, London.Google Scholar
Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, University Press of Liverpool pp. 176192.Google Scholar
Reid, A. J., Carlson, A. K., Creed, I. F. et al. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849873.CrossRefGoogle ScholarPubMed
Remick, K. A. & Helmann, J. D. (2023). The elements of life: A biocentric tour of the periodic table. In Advances in Microbial Physiology 82: 1127.CrossRefGoogle ScholarPubMed
Reynolds, C. S. (2000). Hydroecology of river plankton: The role of variability in channel flow. Hydrological Processes 14: 31193132.3.0.CO;2-6>CrossRefGoogle Scholar
Reynolds, C. S. (2006). The Ecology of Phytoplankton, 1st ed. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511542145.CrossRefGoogle Scholar
RoTAP (2012). Review of transboundary air pollution (RoTAP): Acidification, eutrophication, ground level ozone and heavy metals in the UK, Place of publication not identified: Centre for Ecology & Hydrology on behalf of Defra and the Devolved Administrations.Google Scholar
Rubio, L., and Fernández, J. A. (2019). Seagrasses, the unique adaptation of angiosperms to the marine environment: effect of high carbon and ocean acidification on energetics and ion homeostasis. In Halophytes and climate change: adaptive mechanisms and potential uses. Eds. Hasanuzzaman, M., Shabala, S. and Fujita, M. (Boston, Massachussets: CAB International), pp 81103.Google Scholar
Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv Fur Hydrobiologie 62: 128.Google Scholar
Salmaso, N. (2010). Long-term phytoplankton community changes in a deep subalpine lake: Responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825846.CrossRefGoogle Scholar
Sand-Jensen, K. (1977). Effect of epiphytes on eelgrass photosynthesis. Aquatic Botany 3: 5563.CrossRefGoogle Scholar
Sand-Jensen, K. & Søndergaard, M. (1981). Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Internationale Revue Der Gesamten Hydrobiologie 66: 529552.CrossRefGoogle Scholar
Scheffer, M., Hosper, S. H., Meijer, M. L. et al. (1993). Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275279.CrossRefGoogle ScholarPubMed
Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science 195: 260262.CrossRefGoogle ScholarPubMed
Schindler, D. W., Fee, E. J. & Ruszczynski, T. (1978). Phosphorus input and its consequences for phytoplankton standing crop and production in Experimental Lakes Area and in similar lakes. Journal of the Fisheries Research Board of Canada 35: 190196.CrossRefGoogle Scholar
Schindler, D. W., Hecky, R. E., Findlay, D. L. et al. (2008.) Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences USA 105: 1125411258.CrossRefGoogle ScholarPubMed
Schoelynck, J., Bal, K., Backx, H. et al. (2010). Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and cellulose? New Phytologist 186: 385391.CrossRefGoogle ScholarPubMed
Schvarcz, C. R., Wilson, S. T., Caffin, M. et al. (2022). Overlooked and widespread pennate diatom-diazotroph symbioses in the sea. Nature Communications 13: 799.CrossRefGoogle ScholarPubMed
Seitzinger, S. P., Mayorga, E., Bouwman, A. F. et al. (2010). Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles 24: GB0A08.CrossRefGoogle Scholar
Sharoni, S. & Halevy, I. (2022). Geologic controls on phytoplankton elemental composition. Proceedings of the National Academy of Sciences USA 119: e2113263118.CrossRefGoogle ScholarPubMed
Sharpley, A., Foy, B. & Withers, P. (2000). Practical and innovative measures for the control of agricultural phosphorus losses to water: An overview. Journal of Environmental Quality 29: 19.CrossRefGoogle Scholar
Shepon, A., Eshel, G., Noor, E. et al. (2018). The opportunity cost of animal based diets exceeds all food losses. Proceedings of the National Academy of Sciences 115: 38043809.CrossRefGoogle ScholarPubMed
Sicko-Goad, L. M., Schelske, C. L. & Stoermer, E. F. (1984). Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnology and Oceanography 29: 11701178.CrossRefGoogle Scholar
Skidmore, R. E., Maberly, S. C. & Whitton, B. A. (1998). Patterns of spatial and temporal variation in phytoplankton chlorophyll a in the River Trent and its tributaries. Science of the Total Environment 210: 357365.CrossRefGoogle Scholar
Smetacek, V. & Zingone, A. (2013). Green and golden seaweed tides on the rise. Nature 504: 8488.CrossRefGoogle ScholarPubMed
Smith, L. V., McMinn, A., Martin, A. et al. (2013). Preliminary investigation into the stimulation of phytoplankton photophysiology and growth by whale faeces. Journal of Experimental Marine Biology and Ecology 446: 19.CrossRefGoogle Scholar
Smith, S. M., Fox, S. E., Plaisted, H. K. et al. (2018). Changes in the thermal structure of freshwater lakes within Cape Cod National Seashore (Massachusetts, USA) from 1996 to 2014. Inland Waters 8: 3649.CrossRefGoogle Scholar
Smith, V. H., Joye, S. B. & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51: 351355.CrossRefGoogle Scholar
Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J. J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J. C., Mooij, W. M., van Donk, E., Winder, M., (2012). Beyond the Plankton Ecology Group (PEG) model: Mechanisms driving plankton succession. Annual Review of Ecology Evolution and Systematics 43: 429448.CrossRefGoogle Scholar
Søndergaard, M., Jeppesen, E., Lauridsen, T. L. et al. (2007). Lake restoration: Successes, failures and long-term effects. Journal of Applied Ecology 44: 10951105.CrossRefGoogle Scholar
Soria-Dengg, S., Reissbrodt, R. & Horstmann, U. (2001). Siderophores in marine coastal waters and their relevance for iron uptake by phytoplankton: Experiments with the diatom Phaeodactylum tricornutum. Marine Ecology Progress Series 220: 7382.CrossRefGoogle Scholar
Spears, B. M., Meis, S., Anderson, A. et al. (2013). Comparison of phosphorus (P) removal properties of materials proposed for the control of sediment p release in UK lakes. Science of the Total Environment 442: 103110.CrossRefGoogle ScholarPubMed
Steffen, W., Broadgate, W., Deutsch, L. et al. (2015). The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review 2: 8198.CrossRefGoogle Scholar
Stockdale, A., Tipping, E., Fjellheim, A. et al. (2014). Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model. Ecological Indicators 37: 341350.CrossRefGoogle Scholar
Stoddard, J. L., Jeffries, D. S., Lukewille, A. et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575578.CrossRefGoogle Scholar
Strojsová, A., Vrba, J., Nedoma, J. et al. (2003). Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. European Journal of Phycology 38: 295306.CrossRefGoogle Scholar
Sutton, M. A. (2013). Our nutrient world: The challenge to produce more food and energy with less pollution. United Nations Environment Programme, Global Partnership on Nutrient Management, & International Nitrogen Initiative https://wedocs.unep.org/20.500.11822/10747.Google Scholar
Talling, J. F. (1971). The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. Int. Ver. Limnol 19: 214243.Google Scholar
Talling, J. F. (2010). Potassium – a non-limiting nutrient in fresh waters? Freshwater Reviews 3: 97104.CrossRefGoogle Scholar
Terrado, R., Monier, A., Edgar, R. et al. (2015). Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes. Journal of Phycology 51: 490506.CrossRefGoogle ScholarPubMed
Thronson, A. & Quigg, A. (2008). Fifty-five years of fish kills in coastal Texas. Estuaries and Coasts 31: 802813.CrossRefGoogle Scholar
Tickner, D., Opperman, J. J., Abell, R. et al. (2020). Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. BioScience 70: 330342.CrossRefGoogle ScholarPubMed
Tilman, D., Isbell, F. & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics 45: 471493.CrossRefGoogle Scholar
Tong, Y., Zhang, W., Wang, X. et al. (2017). Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nature Geoscience 10: 507511.CrossRefGoogle Scholar
Twiss, M. R., Gouvêa, S. P., Bourbonniere, R. A. et al. (2005). Field investigations of trace metal effects on Lake Erie phytoplankton productivity. Journal of Great Lakes Research 31: 168179.CrossRefGoogle Scholar
UN Environment (2019). Global Environment Outlook – GEO-6: Summary for Policymakers. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108639217.Google Scholar
Urabe, J. (1993). N and P cycling coupled by grazers’ activities: food quality and nutrient release by zooplankton. Ecology 74: 23372350.CrossRefGoogle Scholar
Valiela, I., McClelland, J., Hauxwell, J. et al. (1997). Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 11051118.CrossRefGoogle Scholar
Vallentyne, J. R. (1974). The Algal Bowl: Lakes and Man. Department of the Environment, Fisheries and Marine Service, Ottawa.Google Scholar
Van Mooy, B. A. S., Fredricks, H. F., Pedler, B. E. et al. (2009). Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 6972.CrossRefGoogle ScholarPubMed
van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. (2019). Global nitrogen and phosphorus in urban waste water based on the shared socio-economic pathways. Journal of Environmental Management 231: 446456.CrossRefGoogle ScholarPubMed
Vilmin, L., Mogollón, J. M., Beusen, A. H. W. et al. (2018). Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century. Global and Planetary Change 163: 6785.CrossRefGoogle Scholar
Vollenweider, R. A. & Kerekes, J. (1980). The loading concept as basis for controlling eutrophication philosophy and preliminary-results of the OECD program on eutrophication. Progress in Water Technology 12: 538.Google Scholar
Volponi, S. N., Wander, H. L., Richardson, D. C. et al. (2023). Nutrient function over form: Organic and inorganic nitrogen additions have similar effects on lake phytoplankton nutrient limitation. Limnology & Oceanography 68: 307321.CrossRefGoogle Scholar
Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380: 4865.CrossRefGoogle ScholarPubMed
Wang, L., Robertson, D. M. & Garrison, P. J. (2007). Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: Implication to nutrient criteria development. Environmental Management 39: 194212.CrossRefGoogle ScholarPubMed
Watson, S. B., Miller, C., Arhonditsis, G. et al. (2016). The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 56: 4466.CrossRefGoogle ScholarPubMed
Wells, M. L., Trainer, V. L., Smayda, T. J. et al. (2015). Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 49: 6893.CrossRefGoogle ScholarPubMed
Williams, S. L. & Dethier, M. N. (2005). High and dry: Variation in net photosynthesis of the intertidal seaweed Fucus gardneri. Ecology 86: 23732379.CrossRefGoogle Scholar
Woolway, R. I., Jennings, E., Shatwell, T. et al. (2021). Lake heatwaves under climate change. Nature 589: 402407.CrossRefGoogle ScholarPubMed
Woolway, R. I., Jones, I. D., Maberly, S. C. et al. (2016). Diel surface temperature range scales with lake size. PLOS ONE 11: e0152466.CrossRefGoogle ScholarPubMed
Wright, R. F., Norton, S. A., Brakke, D. F. et al. (1988). Experimental verification of episodic acidification of freshwaters by sea salts. Nature 334: 422424.CrossRefGoogle Scholar
Wu, M., McCain, J. S. P., Rowland, E. et al. (2019). Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nature Communications 10: 3582. https://doi.org/10.1038/s41467–019–11426-z.CrossRefGoogle ScholarPubMed
Wu, Z., Li, J., Sun, Y., … Liu, Y. (2022). Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nature Geoscience 15: 464468.CrossRefGoogle Scholar
Wurtsbaugh, W. A., Paerl, H. W. & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews-Water 6: e1373. https://doi.org/10.1002/wat2.1373.CrossRefGoogle Scholar
Wymore, A. S., Johnes, P. J., Bernal, S. et al. (2021). Gradients of anthropogenic nutrient enrichment alter N composition and DOM stoichiometry in freshwater ecosystems. Global Biogeochemical Cycles 35: e2021GB006953. https://doi.org/10.1029/2021GB006953.CrossRefGoogle Scholar
Yates, C. A., Johnes, P. J., Owen, A. T. et al. (2019). Variation in dissolved organic matter (DOM) stoichiometry in U.K. freshwaters: Assessing the influence of land cover and soil C:N ratio on DOM composition. Limnology and Oceanography 64: 23282340.CrossRefGoogle Scholar
Yu, C., Huang, X., Chen, H. et al. (2019). Managing nitrogen to restore water quality in China. Nature 567: 516520.CrossRefGoogle ScholarPubMed
Zak, D., Hupfer, M., Cabezas, A. et al. (2021). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews 212: 103446.CrossRefGoogle Scholar
Zehr, J. P., Jenkins, B. D., Short, S. M. et al. (2003). Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environmental Microbiology 5: 539554.CrossRefGoogle ScholarPubMed
Zehr, J. P., Waterbury, J. B., Turner, P. J. et al. (2001). Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412: 635638.CrossRefGoogle ScholarPubMed
Zhang, Y., Jeppesen, E., Liu, X. et al. (2017). Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173: 259265.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×