Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T19:44:43.476Z Has data issue: false hasContentIssue false

Chapter 44 - Taxodium

Cupressales: Taxodiaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Fairly tall, medium-sized to sometimes massive, monoecious, deciduous or sub-evergreen trees, with a typically conical, tapering crown when young, but becoming clean-trunked and starkly irregular-crowned with age. Their trunks are often flared widely towards the base and distinctively and often dramatically fluted.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 74 - 97
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.A. 1992. Cypress-tupelo swamp restoration in southern Louisiana. Restoration Management 10: 188189.Google Scholar
Arnold, M.A. & Denny, G.C. 2007. Taxonomy and nomenclature of bald cypress, pond cypress and Montezuma Cypress: one, two, three species ? Horticultural Technology 17: 125127.Google Scholar
Aulenback, K. & LePage, B.A. 1998. Taxodium wallsii sp. nov.: first occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences 159: 367390.CrossRefGoogle Scholar
Axelrod, A.I. 1976. History of the conifer forests, California and Nevada. University of California Publications in Botany 70: 160.Google Scholar
Axelrod, A.I. 1979. Age and origin of Sonoran Desert vegetation. Californian Academy of Sciences Occasional Papers 132.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Beaven, G.F., Oosting, H.J. & Henry, J. 1939. Pocomoke Swamp: a study of a cypress swamp on the eastern shore of Maryland. Bulletin of the Torrey Botanical Club 66: 376389.CrossRefGoogle Scholar
Bertoldi, R. 1977. Studio palinologico della serie di Le Castella (Calabria). Atti della Accademia Nazionale dei Lincei Classe di Scienze Fisiche Matematiche e Naturali Rendiconti 62: 547555.Google Scholar
Boulter, M.C., Hubbard, R.N. & Kvaček, Z. 1993. A comparison of intuitive and objective interpretations of Miocene plant assemblages from north Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 101(1–2): 8196.CrossRefGoogle Scholar
Brown, C.A. 1984. Morphology and biology of cypress trees. Pp 1624 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Brown, S. 1981. A comparison of the structure, primary productivity and transpiration of a bald cypress ecosystem in Florida. Ecological Monographs 51: 403427.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Buzek, C. 1971. Tertiary Flora from the Northern Part of the Petipsy Area (Northern Bohemian Basin). Prague: Nakladatelstvi Ceskoslovenske Akademie.Google Scholar
Cao, F., Fang, S., Tang, L., et al. 1995. A study on provenance tests of Taxodium distichum seeds. Journal of Nanjing Forestry University 19: 6670.Google Scholar
Chochieva, K.I. 1980. The family Taxodiaceae in the fossil floras of the Georgian-SSR USSR. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya 6(1): 6166.Google Scholar
Conner, W.H. & Toliver, J.R. 1990. Long-term trends in the bald cypress (Taxodium distichum) resource in Louisiana (USA). Forest Ecology and Management 33: 543557.CrossRefGoogle Scholar
Conner, W.H., Toliver, J.R. & Sklar, F.H. 1986. Natural regeneration of bald cypress [Taxodium distichum (L.) Rich] in a Louisiana swamp. Forest Ecology and Management 14: 305317.CrossRefGoogle Scholar
Coultas, C.L. & Duever, M.J. 1984. Soils of cypress swamps. Pp 5159 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Cousens, M.I., Lacey, D.G. & Scheller, J.M. 1988. Safe sites and the ecological life-history of Lorinseria areolata. American Journal of Botany 75: 797807.CrossRefGoogle Scholar
Cypert, E. 1961. The effects of fires in the Okefenokee Swamp in 1954 and 1955. American Midland Naturalist 66: 485503.CrossRefGoogle Scholar
Davis, M.B. 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 1326.Google Scholar
Dean, G.W. 1969. Forests and forestry in the Dismal Swamp. Virginia Journal of Science 20: 166173.Google Scholar
Denny, G., Arnold, M.A. & Bryan, D. 2006. Effect of provenance on alkalinity tolerance in bald cypress. HortScience 41: 10041005.CrossRefGoogle Scholar
Denslow, J.S. & Battagalia, L.L. 2002. Stand composition and structure across a changing hydrologic gradient: Jean Lafitte National Park, Louisiana, USA. Wetlands 22: 738752.CrossRefGoogle Scholar
Díaz, S.C., Therrell, M.D., Stahle, D.W. & Cleaveland, M.K. 2002. Chihuahua (Mexico) winter–spring precipitation reconstructed from tree-rings, 1647–1992. Climate Research 22: 237244.CrossRefGoogle Scholar
Dicke, S.G. & Toliver, J.R. 1990. Growth and development of bald-cypress/water-tupelo stands under continuous versus seasonal flooding. Forest Ecology and Management 33: 523530.CrossRefGoogle Scholar
Dorado, O. 1996. The arbol del Tule (Taxodium muronatum Ten.) is a single genetic individual. Madrõno 43: 445452.Google Scholar
Dorofeev, P.I. 1976. K sistematike tretičnych Taxodium. Bot Žurn 61: 13641373.Google Scholar
Duever, M.J. & Riopelle, L.A. 1983. Successional sequences and rates on tree islands in the Okefenokee Swamp. American Midland Naturalist 110: 186191.CrossRefGoogle Scholar
Duever, M.J., Carlson, J.E., & Riopeue, L.A. 1984. Corkscrew Swamp: a virgin cypress stand. Pp 334348 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Dunn, C.P. & Sharitz, R.R. 1987. Revegetation of a TaxodiumNyssa forested wetland following complete vegetation destruction. Vegetatio 72: 151157.CrossRefGoogle Scholar
Earle, C.J. 2005. The Gymnosperm Database: Taxodium. www.conifers.org/cu/Taxodium_mucronatum.php.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Effler, R.S. & Goyer, R.A. 2006. Baldcypress and water tupelo sapling response to multiple stress agents and reforestation implications for Louisiana swamps. Forest Ecology and Management 226: 330340.CrossRefGoogle Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Enriquez-Peña, E.G., Suzán-Azpiri, H. & Malda-Barrera, G. 2004. Seed viability and germination of Taxodium mucronatum (Ten.) in the states of Querétaro, Mexico. Agrocencia 38: 375381.Google Scholar
Erdei, B., Dolezych, M. & Hably, L. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155(1–2): 6979.CrossRefGoogle Scholar
Ewel, K.C. 1990. Multiple demands on wetlands. Bioscience 40: 660666.CrossRefGoogle Scholar
Ewel, K.C. & Odum, H.T. (eds.) 1984. Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Ewel, K.C. & Wickenheiser, L.P. 1988. Effect of swamp size on growth rates in cypress (Taxodium distichum) trees. American Midland Naturalist 120: 362370.CrossRefGoogle Scholar
Faulkner, S. & Toliver, J. 1983. Genetic variation of cones, seeds, and nursery-grown seedlings of baldcypress (Taxodium distichum (L.) Rich.) provenances. Pp 281288 in Southern Forest Improvement Committee (eds.), Proceedings of the 17th Southern Forest Tree Improvement Conference. Georgia: University of Georgia.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Frank, M.C. & Bend, S.L. 2004. Peat-forming history of the ancestral Souris mire (Palaeocene), Ravenscrag Formation, southern Saskatchewan, Canada. Canadian Journal of Earth Sciences 41: 307322.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Hall, G.W., Diggs, G.M., Soltis, D.E. & Soltis, P.M. 1990. Genetic uniformity of El Arbol del Tule (the Tule Tree). Madrõno 37: 15.Google Scholar
Hare, R.C. 1965. Contribution of bark to fire resistance of southern trees. Journal of Forestry 63: 248251.Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, L.D. & Vickers, C.R. 1984. Some faunal community characteristics of cypress ponds and the changes induced by perturbations. Pp 171185 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1869. Miozäne baltische Flora. – Beitr. Naturk Preuss 2: 1104.Google Scholar
Hesse, I.D., Day, J.W. & Doyle, T.V. 1998. Long-term growth enhancement of baldcypress (Taxodium distichum) from municipal wastewater application. Environmental Management 22: 119127.CrossRefGoogle ScholarPubMed
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Huenneke, L.F. & Sharitz, R.R. 1986. Microsite abundance and the distribution of woody seedlings in a South Carolina cypress-tupelo swamp. American Midland Naturalist 115: 328335.CrossRefGoogle Scholar
Hurník, S. & Kvaček, Z. 1999. Satellite basin of Skyrice near Most and its fossil flora (Miocene). Acta-Universitatis Carolinae Geologica 4: 643656.Google Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal of the Geological Society of Japan 98: 205221.Google Scholar
Jagels, R. & Equiza, M.A. 2007. Why did Metasequoia disappear from North America but not from China. Bulletin of the Peabody Museum of Natural History 48(2): 281290.CrossRefGoogle Scholar
Jiang, M. & Middleton, B.A. 2011. Soil characteristics of sediment-amended baldcypress (Taxodium distichum) swamps of coastal Louisiana. Wetlands 31: 735744.CrossRefGoogle Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Keim, R.F., Chambers, J.L. Hughes, M.S., et al. 2006. Long-term success of stump sprouts in high-graded baldcypress-water tupleo swamps in the Mississippi delta. Forest Ecology and Management 234: 2433.CrossRefGoogle Scholar
Keim, R.F., Izdepski, R.F., Caleb, W. & Day, J.W. Jr. 2012. Growth response of baldcypress to wastewater nutrient addition and changing hydrology regime. Wetlands 32: 95103.CrossRefGoogle Scholar
Knobloch, E. 1961. Die oberoligozäne Flora des Pirskenberges bei Šluknov in Nord-Böhmen. – Sbor. Ústř Úst Geol Odd Paleont 26: 241315.Google Scholar
Knobloch, E., Konzalová, M. & Kvaček, Z. 1996. Die obereozäne Flora der Staré Sedlo-Schichtenfolge in Böhmen (Mitteleuropa). Rozpr Čes geol Úst 49: 1260.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Krauss, K.W., Chambers, J.L., Allen, J.A., Soileau, D.M. & DeBosier, A.S. 2000. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA. Journal of Coastal Research 16: 153163.Google Scholar
Kunzmann, L., Kvaček, Z., Mai, D.H. & Walther, H. 2009. The genus Taxodium (Cupressaceae) in the Palaeogene and Neogene of Central Europe. Review of Palaeobotany and Palynology 153: 153183.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. 1988. The Lauraceae of the European Palaeogene, based on leaf cuticles. Cour Forsch-Inst Senckenberg 107: 345354.Google Scholar
Kvaček, Z. & Bubik, M. 1990. Vestnik Ustr. Ust Geol 65: 8194.Google Scholar
Kvaček, Z. & Hably, L. 1998. New plant elements in the tard clay formation from Eger-Kiseged. Acta Palaeobotanica 38: 523.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kvaček, Z. & Walther, H. 1998. The Oligocene volcanic flora of Kundratice near Litoměřice, České Středohoří volcanic complex (Czech Republic): a review. Acta Musei Nationalis Pragae, Series B – Historia Naturalis 54: 142.Google Scholar
Kvaček, Z. & Walther, H. 2001. The Oligocene of central Europe and the development of forest vegetation in space and time on the basis of megafossils. Palaeontographica B, 259: 125148.CrossRefGoogle Scholar
Kvaček, Z., Teodoridis, V. & Gregor, H.J. 2008. The Pliocene Leaf Flora of Auenheim, Northern Alsace (France). Verlag Documenta Naturae.Google Scholar
Larsson, L.M., Vaida, V. & Ramussen, E.S. 2006. Early Miocene pollen and spores from western Jylland, Denmark: environmental and climatic implications. GFF 128: 261272.CrossRefGoogle Scholar
Larsson, L.M., Dybkjær, K., Rasmussen, E.S., et al. 2011. Miocene climate evolution of northern Europe: a palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3–4): 161175.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, C.-X. & Zhong, Z.-C. 2008. Effects of different water treatment on the nutrient content in soil of Taxodium ascendens seedlings. Acta Hydrobiologica Sinica 32: 154160.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Li, L.-C., Jiang, J.-H., Wang, Y.-Q. & Wang, G. 1997. Karyotype analysis of three species in the Cupressaceae. Acta Botanica Yunnanica 19: 391394 (in Chinese, with English summary).Google Scholar
Lickey, E.B. & Walker, G.L. 2002. Population genetic structure of baldcypress (Taxodium distichum [L.] Rich. var distichum) and pondcypress (T. distichum var imbricatum [Nutall] Croom): biogeographic and taxonomic implications. Southeastern Naturalist 1: 131148.CrossRefGoogle Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Ongjiang and the Miocene of Yinnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. 1995. Tertiäre Vegetationsgeschichte Europas. Jena: G. Fischer.Google Scholar
Mai, D.H. 1997. Die oberoligozänen Floren am Nordrand der Sächsischen Lausitz. Paläontographica Abt B 244: 1224.Google Scholar
Mai, D.H. & Walther, H. 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig) DDR. – Abh. Staatl. Mus. Min. Geol. Dresden 28: 1200.Google Scholar
Mai, D.H. & Walther, H. 1985. Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. – Abh. Staatl. Mus. Min. Geol. Dresden 33: 1260Google Scholar
Mai, D.H. & Walther, H. 1991. Die oligozänen und untermiozänen Floren NW – Sachsen und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden 38: 1230.Google Scholar
Markevich, V.S., Golovneva, L.B. & Bugdaeva, E.V. 2005. Floristic characterization of the Santonian–Campanian deposits of the Zeya–Bureya Basin (Amur Region). In Proceedings of the International Conference on the Current Problems in Paleofloristics, Paleophytogeography, and Phytostratigraphy.Google Scholar
Marois, C. & Ewel, K.C. 1983. Natural and management-related variation in cypress domes. Forest Science 29: 627640.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indicators for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoeology 253: 4155.CrossRefGoogle Scholar
McLeod, K.W. & Ciravolo, T.G. 2003. Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions. Environmental Toxicology and Chemistry 22: 29482951.CrossRefGoogle ScholarPubMed
McMillan, C. 1974. Differentiation in habitat response in Taxodium distichum, Taxodium mucronatum, Platanus occidentalis and Liquidambar styraciflua from the United States and Mexico. Vegetatio 29: 110.CrossRefGoogle Scholar
Megonigal, J.P. & Day, F.P. 1992. Effects of flooding on root and shoot production of baldcypress in large experimental enclosures. Ecology 73: 11821193.CrossRefGoogle Scholar
Meller, B. 2011. Wetland vegetation types in the Late Miocene Alpine Molasse Basin in Upper Austria. Palaeontographica Abteilung B 287: 57155.CrossRefGoogle Scholar
Middleton, B.A. 1999. Wetland Restoration, Flood Pulsing and Disturbance Dynamics. New York: Wiley.Google Scholar
Middleton, B.A. 2000. Hydrochory, seed banks and regeneration dynamics across landscape boundaries in a forested wetland. Plant Ecology 146: 169184.CrossRefGoogle Scholar
Middleton, B.A. (ed). 2002. Flood Pulsing in Wetlands: Restoring the Natural Hydrological Balance. New York: Wiley.Google Scholar
Middleton, B.A. 2009. Regeneration potential of Taxodium distichum swamps and climate change. Plant Ecology 202: 257274.CrossRefGoogle Scholar
Middleton, B.A. & McKee, K.L. 2004. Use of latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environmental change. Global Ecology and Biogeography 13: 247258.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Mitsch, W.J. 1984. Seasonal patterns of a cypress dome in Florida. Pp 2533 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Morzadec-Kerfourn, M.-T. 2008. La limite Pliocene-Pleistocene en Bretagne. Boreas 6: 275283.CrossRefGoogle Scholar
Myers, R.I., Shaffer, G.P. & Llewellyn, D.W. 1995. Baldcypress (Taxodium distichum (L.) Rich) restoration in southeastern Louisiana: the relative effects of herbivory, flooding, competition and macronutrients. Wetlands 15: 141148.CrossRefGoogle Scholar
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. The Quaternary Research (Daiyonki-kenkyu) 31(5): 389397.CrossRefGoogle Scholar
Ohsawa, T., Nishida, H. & Nishida, M. 1993. Structure and affinities of the petrified plants from the Cretaceous of Northern Japan and Saghalien XIII Yubaristrobus gen. nov.: a new taxodiaceous cone from the upper Cretaceous of Hokkaido. Journal of Plant Research 106: 19.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta. 65: 35053527.CrossRefGoogle Scholar
Otto, A., Walther, H. & Püttmann, W. 1994. Molecular composition of a leaf- and root-bearing Oligocene oxbow lake clay in the Weisselster Basin, Germany. Organic Geochemistry 22(2): 275286.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. Lesiak, M. Wilde, V. & Worobiec, G. 2001. Resin and wax biomarkers preserved in Miocene Cupressaceae s.l. from Belchatow and Lipnica Wielka, Poland. Acta Palaeobotanica 41: 195206.Google Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.). The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. & Barker, M.A. 1988. Ecology and geography of hybridisation in British and Irish horsetails. Proceedings of the Royal Society of Edinburgh 86B: 265272.Google Scholar
Pezeshki, S.R., DeLaune, R.D. & Patrick, W.H. Jr. 1987. Response of bald cypress to increase in salinity in Louisiana’s Mississippi river deltaic plain. Wetlands 7: 110.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Pulliam, W.M. 1992. Methane emissions from cypress knees in a southeastern floodplain swamp. Oecologia 91: 126128.CrossRefGoogle Scholar
Randall, C., Duryea, M., Vince, S. & Jeffery, E.R. 2005. Factors influencing stump sprouting by pondcypress (Taxodium distichum var. nutans (Ait.) Sweet). New Forests 29: 245260.CrossRefGoogle Scholar
Rybczyk, B.M., Day, S.W. & Connor, W.H. 2002. The impact of wastewater effluent on decomposition in a subsiding forested wetland. Wetlands 22: 1832.CrossRefGoogle Scholar
Sato, S. 1960. Palynological study on the Haboro coal seam of the Haboro coal-bearing formation. Journal of the Faculty of Science, Hokkaido University 4.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schneider, R.L. & Sharitz, R.R. 1988. Hydrochory and regeneration in a bald cypress: water tupelo swamp forest. Ecology 69: 10551063.CrossRefGoogle Scholar
Schönfeld, G. 1925. Das Taxodium unserer Braunkohlenwälder. Senckenbergiana lethaea 7: 18.Google Scholar
Schopmeyer, C.S. 1974. Seeds of Woody Plants in the United States. Washington, DC: USDA.Google Scholar
Seo, B.-S., Park, C.M. & Song, K. 2010. Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environments. Landscape and Ecological Engineering 6: 211217.CrossRefGoogle Scholar
Shankman, D. 1991. Forest regeneration on abandoned meanders of a coastal plain river in western Tennessee. Castanea 56: 157167.Google Scholar
Sharma, G.K. & Masden, L. 1978. Variation in baldcypress from different habitats. Journal of the Tennessee Academy of Sciences 53: 115116.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Smiley, C.J. & Rember, W.C. 1985. Composition of the Miocene Clarkia flora. Pp. 95112 in Smiley, C.J. (ed.), Late Cenozoic History of the Pacific Northwest. San Franscisco, CA: Pacific Division, American Association for the Advancement of Science.Google Scholar
Soltis, P.S., Soltis, D.E. & Smiley, C.J. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences of the United States of America 89: 449451.CrossRefGoogle Scholar
Spicer, R.A. 1990. Reconstructing high-latitude Cretaceous vegetation and climate. Pp 2736 in Taylor, T.N. & Taylor, E.L. (eds.), Arctic and Antarctic Compared. Antarctic Paleobiology: Its Role in the Reconstruction of Gondwana. New York: Springer.CrossRefGoogle Scholar
Spicer, R.A. & Herman, A.B. 2001. The Albian–Cenomanian flora of the Kukpowruk River, western North Slope, Alaska: stratigraphy, palaeofloristics, and plant communities. Cretaceous Research 22(1): 140.CrossRefGoogle Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stahle, D.W. & Cleaveland, M.K. 1992. Reconstruction and analysis of spring rainfall over the Southeastern US for the past 1000 years. Bulletin of the American Meteorological Society 73: 19471961.2.0.CO;2>CrossRefGoogle Scholar
Streng, D.R., Glitzenstein, J.S. & Harcombe, P.A. 1989. Woody seedling dynamics in an east Texas floodplain forest. Ecological Monographs 59: 177204.CrossRefGoogle Scholar
Sutter, R.D. & Kral, R. 1994. The ecology, status, and conservation of two non-alluvial wetland communities in the south Atlantic and eastern Gulf coastal plain, USA. Biological Conservation 68(3): 235243.CrossRefGoogle Scholar
Suzán-Azpiri, H., Enriquez-Peña, G. & Malda-Barrera, G. 2007. Population structure of the Mexican baldcypress (Taxodium mucronatum Ten.) in Queretaro, Mexico. Forest Ecology and Management 242: 243249.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. and Budantsev, L. Yu. 1960. Tertiary flora of the Kaliningrad Peninsula. III Botan Zhurn 45: 871875 (in Russian).Google Scholar
Takaso, T. & Owens, J.N. 1996. Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). American Journal of Botany 83(9): 11751180.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae–Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae – Coniferales). American Journal of Botany 77: 12091221.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University 4(9): 1112.Google Scholar
Tang, L.Z., Huang, B.L., Haibara, K. & Toda, H. 2008. Ecological adaptation mechanisms of roots to flooded soil and respiration characteristics of knee roots of Taxodium ascendens. Chinese Journal of Plant Ecology 32(6): 1258.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbucher fur Geologie und Palaontologie Abhandlungen 250: 287312.CrossRefGoogle Scholar
Tiwari, S.P., Yadav, D., Kumar, P. & Chauhan, D.K. 2012. Comparative palynology and wood anatomy of Taxodium distichum (L.) Rich. and Taxodium mucronatum Ten. Plant Systematics and Evolution 298: 723730.CrossRefGoogle Scholar
Tremmel, B. & Martin, C.E. 2000. Survival of deep trunk-burial in baldcypress (Taxodium distichum). Transactions of the Kansas Academy of Science 103: 4850.CrossRefGoogle Scholar
Tsumara, Y., Tomaru, N., Suyama, Y. & Bacchus, S. 1999. Genetic diversity and differentiation of Taxodium in south-eastern United States using cleaved amplified polymorphic sequences. Heredity 83: 229238.CrossRefGoogle Scholar
Villanueva, D., Stahle, D.W., Luckman, B.H., et al. 2007. Potential for dendrochronology of Taxodium mucronatum Ten. and its conservation in Mexico. Ciencia Forestal en México 32(101): 937.Google Scholar
Visser, J.M. & Sasser, C.E. 1995. Changes in tree species composition, structure and growth in a bald cypress–water tupelo swamp forest, 1980–1990. Forest Ecology and Management 72: 119129.CrossRefGoogle Scholar
Wade, D., Ewel, J., Hofstetter, R. 1980. Fire in South Florida Ecosystems. Ashville, NC: US Department of Agriculture.CrossRefGoogle Scholar
Walther, H. & Kvaček, Z. 2007. Early Oligocene flora of Seifhennersdorf (Saxony). Acta Musei Nationalis Pragae Series B–Historia Naturalis 63(2–4): 85174.Google Scholar
Wang, G. & Gao, F. 2004. Effects of soil salt and water contents on growth and biomass allocation of Taxodium distichum. Chinese Journal of Applied Ecology 15: 23962400.Google Scholar
Watts, A.C., Kobziar, L.N., & Snyder, J.R. 2012. Fire reinforces structure of pondcypress (var.) domes in a wetland landscape. Wetlands 32: 439448.CrossRefGoogle Scholar
Wetzel, P.R., van der Valk, A.G. & Toth, L.A. 2001. Restoration of wetland vegetation on the Kissimmee River floodplain: potential role of seed banks. Wetlands: 21: 189198.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Worobiec, G. 2003. New Fossil Floras from Neogene Deposits in the Bełchatów Lignite Mine. Warsaw: Polish Academy of Sciences.Google Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Taxodium
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Taxodium
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Taxodium
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.008
Available formats
×