Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T15:41:54.588Z Has data issue: false hasContentIssue false

Chapter 5 - Larix

Pinales: Laricaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Deciduous coniferous trees of very variable size, c.10–45 m or more in height, typically with straight trunks and narrow conical or billowing, rather sparse and open crowns, in exposed situations. At least the uppermost branch systems plus often the upper tree-crown typically adopt a conspicuously asymmetric and usually downwind-trained crown habit.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 148 - 172
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abaimov, A.P. & Korpachinskii, Yu. 1980. Polymorphisms of Larix gmelinii and Larix cajanderi. Izvesitya Sibirskogo o Toeleniya Akademii Nauk SSR, Sci Biologocheskii 1: 1924.Google Scholar
Abaimov, A.P., Lesinski, L.A., Martinsson, O. & Milyutin, L.I. 1998. Variability and ecology of Siberian larch species. Swedish University of Agricultural Sciences, Department of Silviculture Reports 43: 1123.Google Scholar
Anderson, P.M. & Lozhkin, A.V. 2001. The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20(1–3): 93125.CrossRefGoogle Scholar
Araki, N.H.T., Khatab, I.A., Henamali, K.K.G.U., et al. 2008. Phylogeography of Larix sukaczewii Dyl. and Larix sibirica L. inferred from nucleotide variations of nuclear genes. Tree Genetics and Genomes 4: 611623.CrossRefGoogle Scholar
Ban, Y. & Xu, H. 1995. Natural regeneration of Larix gmelinii seedlings and micro-habitat in old-growth Larix gmelinii forests. Forest Research (China) 8: 660664.Google Scholar
Ban, Y., Xu, H. & Li, Z. 1997. Mortality patterns of Larix gmelinii and the effect of fallen deadwood on regeneration of old Larix gmelinii forest. Chinese Journal of Applied Ecology 8: 449454.Google Scholar
Barchenkov, A.P. 2011. Morphological variability and quality of seeds of Larix gmelinii (Rupr.) Rupr. Contemporary Problems in Ecology 4: 327333.CrossRefGoogle Scholar
Barchenkov, A.P., Milyutin, L.I. & Isaev, E.P. 2007. The variability of seeds in Siberian larch species. Lesovedenie 2: 6569.Google Scholar
Barnett, J. 1989. Palynology and paleoecology of the Tertiary Weaverville Formation, northwestern California, USA. Palynology 13: 195246.CrossRefGoogle Scholar
Bashalkhanova, S.I., Konstantinov, Y.M., Verbitskii, D.S. & Kobzev, V.F. 2000. Reconstruction of phylogenetic relationships of larch, Larix sukaczewii Dyl. on chloroplast DNA trnK intron sequences. Russian Journal of Genetics 39: 11161120.CrossRefGoogle Scholar
Berner, L.T., Beck, P.S.A., Loranty, M.M., et al. 2012. Cajander larch (Larix cajanderi) biomass distribution, fire regimes and post-fire recovery in northeastern Siberia. Biogeosciences Discussion 9: 75557600.Google Scholar
Binney, H.A., Willis, K.J., Edwards, M.E., et al. 2009. The distribution of Late-Quaternary woody taxa in northern Eurasia: evidence from new microfossil database. Quaternary Science Reviews 28: 24552464.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O. & Ammann, B. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209(1–4): 259279.CrossRefGoogle Scholar
Bobrov, E.G. 1972. Generis Larix Mill. Historia et Systematica. Leningrad: Academie of Sciences, URSS.Google Scholar
Bobrov, E.G. 1973. Introgressive hybridisation, Sippenbildung und Vegetationsänderung. Feddes Repertorium 84(4): 273293.CrossRefGoogle Scholar
Bobrov, E.G. 1983. Introgressive hybridization and geohistorical changes in taiga zone formations of the USSR. Botanicheskiĭ Zhurnal 68(1): 39.Google Scholar
Bondarev, A. 1997. Age distribution patterns in open boreal Dahurian larch forests of central Siberia. Forest Ecology and Management 93: 205214.CrossRefGoogle Scholar
Borisova, O.K. 2005. Vegetation and climate changes at the Eemian/Weichselian transition: new palynological data from Central Russian Plain. Polish Geological Institute Special Papers 16.Google Scholar
Bräuning, A. 2006. Tree-ring evidence of ‘Little Ice Age’ glacier advances in southern Tibet. The Holocene 16(3): 369380.CrossRefGoogle Scholar
Brown, K.R., Zobel, D.B. & Zasada, J.C. 1988. Seed dispersal, seedling emergence, and early survival of Larix laricina (DuRoi) K. Koch in the Tanana Valley, Alaska. Canadian Journal of Forest Research 18: 306314.CrossRefGoogle Scholar
Brubaker, L.B., Anderson, P.M., Edwards, M.E. & Lozhkin, A.V. 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32(5): 833848.CrossRefGoogle Scholar
Burga, C.A. 1988. Swiss vegetation history during the last 18 000 years. New Phytologist 110(4): 581662.CrossRefGoogle Scholar
Burga, C.A., Frauenfelder, R., Ruffet, J., Hoelzle, M. & Kääb, A. 2004. Vegetation on Alpine rock glacier surfaces: a contribution to abundance and dynamics on extreme plant habitats: flora-morphology distribution. Functional Ecology of Plants 199(6): 505515.CrossRefGoogle Scholar
Carrer, M. & Urbinati, C. 2006. Long‐term change in the sensitivity of tree‐ring growth to climate forcing in Larix decidua. New Phytologist 170(4): 861872.CrossRefGoogle ScholarPubMed
Cheng, W.C. & Fu, L.K.. 1975. Larix speciosa. Acta Phytotax. Sin. 13 (4): 84.Google Scholar
Chou, Y.L. and Uu, J.W. 1995. Deciduous and deciduous-evergreen forests in Northeastern China. Pp 307315 in Box, E. O. et al. (eds.), Vegetation Science in Forestry. Alphen aan den Rijn: Kluwer Academic.Google Scholar
Colenutt, M.E. & Luckman, B.H. 1991. Dendrochronological investigation of Larix lyallii at Larch Valley, Alberta. Canadian Journal of Forest Research 21(8): 12221233.CrossRefGoogle Scholar
Coope, G.R., Field, M.H., Gibbard, P.L., Greenwood, M. & Richards, A.E. 2002. Palaeontology and biostratigraphy of Middle Pleistocene river sediment in the Mathon Member, at Mathon, Herefordshire, England. Proceedings of the Geologists’ Association 113(3): 237258.CrossRefGoogle Scholar
Cushman, S.A. & Wallin, D.O. 2002. Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East. Forest Ecology and Management 168(1–3): 201215.CrossRefGoogle Scholar
Dolezal, J., Ishii, H., Vetrova, V.P., Sumida, A. & Hara, T. 2004 Tree growth and competition with Betula platyphylla: Larix cajanderi post-fire forest in central Kamchatka. Annals of Botany 94: 333343.CrossRefGoogle Scholar
Dolman, A.J., Maximov, T.C., Moors, E.J., et al. 2004. Net ecosystem exchange of carbon dioxide and water of Far Eastern Siberian Larch (Larix cajanderi) on permafrost. Biogeosciences 1: 133146.CrossRefGoogle Scholar
Doyle, J. 1926. Notes on the staminate cone of Larix leptolepis. Proceedings of the Royal Irish Academy 37B: 154169.Google Scholar
Earle, C.J., Brubaker, L.B., Lozhkin, A.V. & Anderson, P.M. 1994. Summer temperature since 1600 for the upper Kolyma region, northeastern Russia, reconstructed from tree rings. Arctic and Alpine Research 26(1): 6065.CrossRefGoogle Scholar
Edwards, M.E., Anderson, P.M., Brubaker, L.B., et al. 2000. Pollen‐based biomes for Beringia 18,000, 6000 and 0 14C yr BP. Journal of Biogeography 27(3): 521554.CrossRefGoogle Scholar
Equiza, M.A., Day, M.E. & Jagels, R. 2006. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer. Tree Physiology 26: 353364.CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Feurdean, A. & Bennike, O. 2004. Late Quaternary palaeoecological and palaeoclimatological reconstruction in the Gutaiului Mountains, northwest Romania. Journal of Quaternary Science 19(8): 809827.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Franklin, J.F., Maeda, T., Ohsumi, Y., et al. 1979. Subalpine coniferous forests of central Honshu, Japan. Ecological Monographs 49(3): 311334.CrossRefGoogle Scholar
Gernandt, D.S. & Liston, A. 1999. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). American Journal of Botany 86(5): 711723.CrossRefGoogle ScholarPubMed
Goryachkina, O.V., Olga, V., Badaeva, E. & Mutanova, E.N. 2013. Molecular cytogenetic analysis of Siberian Larix species by fluorescence hybridisation. Plant Systematics and Evolution 299: 471479.CrossRefGoogle Scholar
Grabner, M., Wimmer, R., Gierlinger, N, Evans, R. & Downes, G. 2005. Heartwood extractives in larch and effects on x-ray densiometry. Canadian Journal of Forest Research 35: 27812786.CrossRefGoogle Scholar
Gratzner, G., Darabant, A., Chetri, P.B., Rai, P.B. & Eckmullner, O. 2004. Interspecific variation in the response of growth, crown morphology, and survivorship to light of six tree species in the conifer belt of the Bhutan Himalayas. Canadian Journal of Forest Research 34: 10931107.CrossRefGoogle Scholar
Gross-Louis, M.-C., Bousquet, J., Paques, L.E. & Isabel, N. 2005. Species markers in Larix spp., based on RAPDs and nuclear, cpDNA, and mtDNA genes and their phylogenetic implications. Tree Genetics and Genomes 1: 5063.CrossRefGoogle Scholar
Hagman, M. 2003. Genetic diversity of European boreal conifers. Acta Horticulturae 615.Google Scholar
Hallett, D.J. & Hills, L.V. 2006. Holocene vegetation dynamics, fire history, lake level and climate change in the Kootenay Valley, southeastern British Columbia, Canada. Journal of Paleolimnology 35: 351371.CrossRefGoogle Scholar
Hantemirov, R.M., Gorlanova, L.A. & Shiyatov, S.G. 2004. Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology 209(1–4): 155164.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hoch, G. 2013. Reciprocal root–shoot cooling and soil fertilization effects on the seasonal growth of two treeline conifer species. Plant Ecology & Diversity 6(1): 2130.CrossRefGoogle Scholar
Holzhauser, H. & Zumbühl, H.J. 1999. Glacier fluctuations in the Western Swiss and French Alps in the 16th century. Pp 223237 in Pfister, C., Brazdil, R. & Glaser, R. (eds.), Climatic Variability in Sixteenth-Century Europe and Its Social Dimension. New York: Springer.CrossRefGoogle Scholar
Hutton, M.J., MacDonald, G.M. & Mott, R.J. 1994. Postglacial vegetation history of the Mariana Lake region, Alberta. Canadian Journal of Earth Sciences 31(2): 418425.CrossRefGoogle Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Igarashi, Y. & Igarashi, T. 1998. Late Holocene vegetation history in south Sakhalin, northeast Asia. Japanese Journal of Ecology (Japan) 48: 231244.Google Scholar
Jackson, S.T., Overpeck, J.T., WebbIII, T., Keattch, S.E. & Anderson, K.H. 1997. Mapped plant-macrofossil and pollen records of late Quaternary vegetation change in eastern North America. Quaternary Science Reviews 16(1): 170.CrossRefGoogle Scholar
Kajimoto, T., Matsuura, Y., Osawa, A., et al. 2003. Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia. Plant and Soil 255: 281292.CrossRefGoogle Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution, 44(2), 765777.CrossRefGoogle Scholar
Karlman, L. 2010. Genetic variation in frost tolerance, juvenile growth and timber productivity in Russian larch (Larix Mill). Acta universitatis Agriculturae Sueciae 30: 16521680.Google Scholar
Kharuk, V.I., Ranson, K.J., Im, S.T. & Naurzbaev, M.M. 2006. Forest-tundra larch forest and climatic trends. Russian Journal of Ecology 37: 291298.CrossRefGoogle Scholar
Khatab, I.A., Ishiyama, H., Inomata, N., Wang, X.A. & Szmidt, A.E. 2008. Phylogeography of Eurasian larch species informed from nucleotide variation in two nuclear genes. Genes and Genetic Systems 83: 5566.CrossRefGoogle Scholar
Klinge, M., Böhner, J. & Erasmi, S. 2015. Modeling forest lines and forest distribution patterns with remote-sensing data in a mountainous region of semiarid central Asia. Biogeosciences 12(10): 28932905.CrossRefGoogle Scholar
Kolbek, J., Valachovič, M., Ermakov, N. & Neuhäuslová, Z. 2003. Comparison of forest syntaxa and types in Northeast Asia. Pp 409423 in Kolbek, J., Šrůtek, M., Box, E.O. (eds.), Forest Vegetation of Northeast Asia. New York. Springer.CrossRefGoogle Scholar
Koropachinskii, I. Yu. & Milyutin, L.I. 2011. Botanical-geography and forestry aspects of introgressive hybridisation of the Gmelin’s larch (Larix gmelinii (Rupr) Rupr.) and Cajander larch (L. cajanderi Mayr). Contemporary Problems of Ecology 4: 167177.CrossRefGoogle Scholar
Kozyrenko, M.M., Artyukova, E.V. & Remanova, G.D. 2004a. Genetic variability and population structure in larch in Primory’e. Lesovedenie 6: 3441.Google Scholar
Kozyrenko, M.M., Artyukova, E.V. & Remanova, G.D. 2004b. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russian Journal of Genetics 40: 401409.CrossRefGoogle Scholar
Krause, S.C. & Raffa, K.F. 1996. Defoliation tolerance affects the spatial and temporal distributions of larch sawfly and natural enemy populations. Ecological Entomology 21: 259269.CrossRefGoogle Scholar
Kremenetski, C.V., Sulerzhitsky, L.D. & Hantemirov, R. 1998. Holocene history of the northern range limits of some trees and shrubs in Russia. Arctic and Alpine Research 30(4): 317333.CrossRefGoogle Scholar
Kulakowski, D., Rixen, C. & Bebi, P. 2006. Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. Forest Ecology and Management 223(1–3): 6674.CrossRefGoogle Scholar
Kullman, L. 1998. Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Global Ecology and Biogeography Letters 7: 181188.CrossRefGoogle Scholar
Kullman, L. 2005. Gamia och nya trad pa Fulufjallet: Vagetationshistoria pa hog niva. Svensk Botanisk Tidskrift 99: 315329.Google Scholar
Labandeira, C.C., LePage, B.A. & Johnson, A.H. 2001. A dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? American Journal of Botany 88: 20262039.CrossRefGoogle Scholar
Laewandowski, A. & Mejnartowicz, L. 1991. Levels and patterns of allozyme variation in European larch (Larix decidua) populations. Hereditas 115: 221236.CrossRefGoogle Scholar
Larionova, A. Yu., Yakhneva, N.V. & Kuz’mina, N.A. 2003. Genetic variation of Siberian larch in the Lower Angara River basin. Lesovedenie 4: 1722.Google Scholar
Larionova, A. Yu., Yakhneva, N.V. & Abaimov, A.P. 2004. Genetic diversity and differentiation of Gmelin larch populations from Evenhia (Central Siberia). Russian Journal of Genetics 40: 11271133.CrossRefGoogle ScholarPubMed
LePage, B.A. & Basinger, J.F. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk Ox 37: 103109.Google Scholar
LePage, B.A. & Basinger, J.F. 1991a. A new species of Larix (Pinaceae) from the early Tertiary of Axel Heiberg Island, Arctic Canada. Review of Palaeobotany and Palynology 70: 89111.CrossRefGoogle Scholar
LePage, B.A. & Basinger, J.F. 1991b. Early Tertiary Larix from the Buchanan lake formation, Canadian Arctic Archipelago, and a consideration of the phytogeography of the genus. Bulletin Geological Survey of Canada 403: 6781.Google Scholar
Levina, E.A., Adrianova, I. Iu., & Reunova, S.D. 2008. Genetic variability and differentiation in the larch populations within the range of Larix olgensis A. Henry in the Primory’e region. Russian Journal of Genetics 44: 320325.CrossRefGoogle Scholar
Lewandowski, A., Burczyk, J. & Chałupka, W. 1997. Preliminary results on allozyme diversity and differentiation of Norway spruce (Picea abies (L.) Karst.) in Poland based on plus tree investigations. Acta Societatis Botanicorum Poloniae 66(2): 197200.CrossRefGoogle Scholar
Li, H.-M. 1992. Early Tertiary palaeoclimate of King George Island, Antarctica: evidence from the Fossil Hill flora. Pp 371375 in Yoshida, Y. (ed.), Recent Progress in Antarctic Earth Science. Tokyo: Terra Nova Publishing.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomic Sinica 31: 405412.Google Scholar
Li, L.-C., Jiang, J.-H., Wang, Y.-Q. & Wang, G. 1997. Karyotype analysis of three species in the Cupressaceae. Acta Botanica Yunnanica 19: 391394 (in Chinese, with English Summary).Google Scholar
Li, M.H., Yang, J. & Krauchi, N. 2003. Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Canadian Journal of Forest Research 33: 653662.CrossRefGoogle Scholar
Liu, B., Zhang., S.-G., Zhang, Y., et al. 2006. Molecular cytogenetic analysis of four Larix species by bicolor fluorescence in situ hybridisation and DAPI banding. International Journal of Plant Sciences 1167: 367372.CrossRefGoogle Scholar
Liu, C., Luo, J. & Liang, H. Ordination of Dahurian larch forest in Mohe forest area. Forest Research (China) 5: 589594.Google Scholar
Liu, H., Tang, Z., Dai, J., Tang, Y. & Cui, H. 2002. Larch timberline and its development in North China. Mountain Research and Development 22: 359367.CrossRefGoogle Scholar
Liu, Q., Li, X. & Hu, L. 2004. Image analysis and community monitoring on coniferous forest dynamics in Changbei Mountain. Chinese Journal of Applied Ecology 15: 11131120.Google Scholar
Lloyd, A.H., Dunn, A.G. & Berner, L. 2011. A latitudinal gradient and Larix growth response to climate warming in the Siberian taiga. Global Change Biology 17: 19331945.CrossRefGoogle Scholar
Lopez, M.L.C., Saito, H. & Kobayashi, Y. 2007. Inter-annual environmental soil fertility rate variation and transportation for Larix cajanderi, central Yakutia, Eastern Siberia. Journal of Hydrology 338: 251260.CrossRefGoogle Scholar
MacDonald, G.M., Case, R.A. & Szeicz, J.M. 1998. A 538-year record of climate and treeline dynamics from the lower Lena River region of northern Siberia, Russia. Arctic and Alpine Research 30(4): 334339.CrossRefGoogle Scholar
MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., et al. 2000. Holocene treeline history and climate change across northern Eurasia. Quaternary Research 53(3): 302311.CrossRefGoogle Scholar
Maier, J. 1992. Genetic variation in European larch (Larix decidua Mill). American Scientific Forester 49: 3947.Google Scholar
Maruta, E. 1993. Winter water relations of timberline larch (Larix leptolepis) on Mt. Fuji. International Botanical Congress, Tokyo, 1993. Abstract 2066.Google Scholar
Matveev, A.V. & Semerikov, L.F. 1994. Structure of ecological genetic variability of Larix sibirica Lbd. at the north extent of its range. Russian Journal of Ecology 25: 158163.Google Scholar
Matveev, A.V. & Semerikov, L.F. 1995. Variability of Siberian larch (Larix sibirica Lbd.): seed quality of the polar forest limit. Russian Journal of Ecology 26: 1015.Google Scholar
Mayer, A.C. & Stöckli, V. 2005. Long-term impact of cattle grazing on subalpine forest development and efficiency of snow avalanche protection. Arctic Antarctic and Alpine Research 37(4): 521526.CrossRefGoogle Scholar
McClelland, B.R. & McClelland, P.T. 1999. Pileated woodpecker nest and roost trees in Montana: links with old-growth and forest ‘health’. Wildlife Society Bulletin 27: 846857.Google Scholar
McClelland, B.R. & McClelland, P.T. 2000. Red-naped Sapsucker nest trees in northern Rocky Mountain old-growth forest. The Wilson Bulletin 112(1): 4450.CrossRefGoogle Scholar
McComb, A.C. 1955. The European larch: its races, site requirements and characteristics. Forest Science 1: 298318.Google Scholar
Mill, R.R. 1999. A new species of Larix (Pinaceae) from southeast Tibet and other nomenclatural notes on Chinese Larix. Novon 9: 7982.CrossRefGoogle Scholar
Miller, C.N. 1985 Pityostrobus pubescens, a new species of pinaceous cones from the late Cretaceous of New Jersey. American Journal of Botany 72: 520529.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Moiseev, P.A. 2002. Effect of climatic changes on radial increment and age structure formation in high-mountain larch forests of the Kuznetsk Ala Tau. Russian Journal of Ecology 33: 713.CrossRefGoogle Scholar
Montague, T.G. & Givinish, T.J. 1996. Distribution of black spruce versus eastern larch along peatland gradients: relationship to relative stature, growth rate and shade tolerance. Canadian Journal of Botany 74: 15141532.CrossRefGoogle Scholar
Moore, J.A., HamiltonJr, D.A., Xiao, Y. & Byrne, J. 2004. Bedrock type significantly affects individual tree mortality for various conifers in the inland Northwest, USA. Canadian Journal of Forest Research 34(1): 3142.CrossRefGoogle Scholar
Mu, C. 2003. Succession of Larix olgensis and Betula platyphylla-marse ecotone communities in Changbai Mountain. Chinese Journal of Applied Ecology 14: 1813–1219.Google Scholar
Mueller, A.D., Islebe, G.A., Hillesheim, M.B., et al. 2009. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quaternary Research 71(2): 133141.CrossRefGoogle Scholar
Nara, K. & Hogetsu, T. 2004. Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85(6): 17001707.CrossRefGoogle Scholar
Noshiro, S., Terada, K., Tsuji, S.I. & Suzuki, M. 1997. Larix–Picea forests of the Last Glacial age on the eastern slope of Towada Volcano in northern Japan. Review of Palaeobotany and Palynology 98: 207222.CrossRefGoogle Scholar
Obidowicz, A. 1993. Wahania gornej granicy lasu w poznym plejstocenie i holocenie w Tatrach [Fluctuations of the forest timberline in the Tatra Mountains during the last 12 000 years]. Dokumentacja Geograficzna 4–5.Google Scholar
Obidowicz, A. 1996. A Late Glacial–Holocene history of the formation of vegetation belts in the Tatra Mts. Acta Palaeobotanica 36(2): 159206.Google Scholar
Ohsawa, M. 1984. Differentiation of vegetation zones and species strategies in the subalpine region of Mt. Fuji. Vegetatio 57: 1552.CrossRefGoogle Scholar
Ohsawa, M. 2005. Species richness and composition of Curculionidae (Coleoptera) in a conifer plantation, secondary forest, and old‐growth forest in the central mountainous region of Japan. Ecological Research 20(6): 632645.CrossRefGoogle Scholar
Oka, S., Ohga, B. & Kanno, H. 1992. Colonization of larch scrub and slope processes along Shichataro Ridge on the northwestern side of Mount Fuji. Quaternary Research (Tokyo) 31: 213220.CrossRefGoogle Scholar
Ostenfeld, C.H. & Larsen, C.S. 1930. The species of the genus Larix and their geographical distribution. Kgl. Videnskabernes Selskab., Biologishe Meddelser 9: 1106.Google Scholar
Pâques, L.E. 1989. A critical review of larch hybridization and its incidence on breeding strategies. Annales des sciences forestières 46(2): 141153.CrossRefGoogle Scholar
Pisaric, M.F., MacDonald, G.M., Cwynar, L.C. & Velichko, A.A. 2001. Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting late Quaternary fossil pollen assemblages. Arctic Antarctic and Alpine Research 33(1): 1927.CrossRefGoogle Scholar
Polezhaeva, M.A., Lascoux, M. & Semerikov, V.C. 2010. Cytoplasmic DNA variation and biogeography of Larix Mill in Northeastern Asia. Molecular Ecology 19: 12391252.CrossRefGoogle Scholar
Polunin, N. 1959. Circumpolar Arctic Flora. Oxford: Oxford University Press.Google Scholar
Ponel, P., Andrieu‐Ponel, V., Parchoux, F., Juhasz, I. & de Beaulieu, J.L. 2001. Late‐glacial and Holocene high‐altitude environmental changes in Vallée des Merveilles (Alpes–Maritimes, France): insect evidence. Journal of Quaternary Science 16(8): 795812.CrossRefGoogle Scholar
Quian, T., Ennos, R.A. & Helgason, T. 1995. Genetic relationships among larch species based on analysis of restriction fragment variation for chloroplast DNA. Canadian Journal of Forest Research 25: 11971202.CrossRefGoogle Scholar
Ravazzi, C., Pini, R., Breda, M., et al. 2005. The lacustrine deposits of Fornaci di Ranica (late Early Pleistocene. Italian Pre-Alps): stratigraphy palaeoenvironment and geological evolution. Quaternary International 131(1): 3558.CrossRefGoogle Scholar
Risch, A.C., Schütz, M., Krüsi, B.O., et al. 2004. Detecting successional changes in long-term empirical data from subalpine conifer forests. Plant Ecology 172: 95105.CrossRefGoogle Scholar
Rubatscher, D., Munk, K., Stohr, D., et al. 2006. Biomass expansion functions for Larix decidua: a contribution to the estimation of forest carbon stocks. Austrian Journal of Forest Science 123: 87101.Google Scholar
Salem, M.Z.M., Zeidler, A., Bohm, M., Mohamed, M.E.A. & Ali, H.M. 2015. GC/MS analysis of oil extractives from wood and bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua. BioResources 10(4): 7725–7737.CrossRefGoogle Scholar
Schorn, H.E. 1994. A preliminary discussion of fossil larches (Larix, Pinaceae) from the Arctic. Quaternary International 23: 173183.CrossRefGoogle Scholar
Selmeier, A. 2002. Silicified Tertiary woods from Iceland (Larix) and the north alpine molasse basin (Liquidambar). Mitteilungen der Bayerischen Staatssammlung fur Palaontologie und Historische und Historische Geologie 42: 139153.Google Scholar
Semerikov, V.L. & Lascoux, M. 1999. Genetic relationships amongst American Larix species based on allozymes. Heredity 83: 6270.CrossRefGoogle Scholar
Semerikov, V.L. & Lascoux, M. 2003. Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. American Journal of Botany 90: 11131123.CrossRefGoogle ScholarPubMed
Semerikov, V.L., Semerikov, L.F. & Lascoux, M. 1999. Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity 82: 193204.CrossRefGoogle Scholar
Semerikov, V.L., Zhang, H., Sun, M. & Lascoux, M. 2003. Conflicting phylogenies of Larix (Pinaceae) based on cytoplasmic and nuclear DNA. Molecular Phylogenetics and Evolution 27: 173184.CrossRefGoogle ScholarPubMed
Semerikov, V.L., Iroshnikova, A.I. & Lascoux, M. 2007. Mitochondrial DNA variation pattern and postglacial history of the Siberian Larch (Larix sibirica Lebed.). Russian Journal of Ecology 38: 147154.CrossRefGoogle Scholar
Shang, H., Cui, J.Z. & Li, C.S. 2001. Pityostrobus yixianensis sp. nov., a pinaceous cone from the Lower Cretaceous of north-east China. Botanical Journal of the Linnean Society 136(4): 427437.CrossRefGoogle Scholar
Shick, K.R., Pearson, E. & Ruggiero, L.F. 2006. Forest habitat associations of the golden-mantled ground squirrel: implications for fuels management. Northwest Science 80(2): 133.Google Scholar
Shigapov, Z.K., Putenikhin, V.P. & Shigapov, A.C. 1998. Genetic structure of Ural populations of Larix sukczwii Dyl. Genetica 34: 6574.Google Scholar
Shilo, N., Lozhkin, A., Anderson, P., et al. 2008. First data on the expansion of Larix gmelinii (Rupr.) Rupr. into Arctic regions of Beringia during the early Holocene. Doklady Earth Sciences 423: 12651267.CrossRefGoogle Scholar
Shurkal, A.V., Podoga, A.V. & Semeriko, V.L. 1989. Allozyme polymorphism of Siberian larch (Larix sibirica). Genetika 25: 18991901.Google Scholar
Sindelar, J. 1965. Preliminary research results of the morphological and botanical characters of European larch, Larix deciduas Mill. Communications Instituti Forestalis Czechosloveniae, Praha 8: 101113.Google Scholar
Stoffel, M., Lièvre, I., Monbaron, M. & Perret, S. 2005. Seasonal timing of rockfall activity on a forested slope at Täschgufer (Swiss Alps): a dendrochronological approach. Zeitschrift für Geomorphologie 49: 89106.Google Scholar
Sun, X.-M., Zhang, S.-G., Qi, L.-W., et al. 2003. Genetic variations in pulpwood qualities of open-pollinated Japanese larch families. Forest Research 16: 515522.Google Scholar
Tarasov, P.E., Jolly, D. & Kaplan, J.O. 1997. A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology 136(1–4): 281292.CrossRefGoogle Scholar
Tarasov, P., Müller, S., Andreev, A., Werner, K. & Diekmann, B. 2009. Younger Dryas Larix in eastern Siberia: a migrant or survivor?. PAGES news 17(3): 122123.CrossRefGoogle Scholar
Tchermak, L. 1935. Die Natürlich Verbreitung der Lärche in den Ostalpen. Wein: Julius Springer Verlag.CrossRefGoogle Scholar
Tikhinova, I.V. & Stolyarova, O.A. 2008. Individual sensitivity of Larix sibirica L. in open woodland of the Siberian forest-steppe. Contemporary Problems of Ecology 1: 682686.CrossRefGoogle Scholar
Treter, U., Ramsbeck-Ullmann, M., Böhmer, H.J. & Bösche, H. 2002. Vegetationsdynamik im Vorfeld des Lys-Gletschers (Valle di Gressoney/Region Aosta/Italien) seit 1821 [Vegetation Dynamics in the Lys Glacier Forefield (Valle di Gressoney/Aosta Region/Italy) since 1821]. Erdkunde 56: 253267.CrossRefGoogle Scholar
Troup, R.S. 1921. The Silviculture of Indian Trees, Volume I., Dehradun: International Book Distributors.Google Scholar
Trubina, M.R. 2006. Distribution of plants differing in attitude toward thermal conditions in communities of the timberline ecotone on Mount Iremel, the Southern Urals. Russians Journal of Ecology 37: 306315.CrossRefGoogle Scholar
Tseplyaev, V.P. 1961. The Forests of the U.S.S.R. Moscow: LESA SSSR (in Russian; translated from Russian by Prof. A. Gourevitch, Israel Program for Scientific Translation, Jerusalem, 1965).Google Scholar
Tsuji, S.I., Minaki, M. & Osawa, S. 1984. Paleobotany and paleoenvironment of the late Pleistocene in the Sagami region, central Japan. Quaternary Research 22(4): 279296.CrossRefGoogle Scholar
Tsukada, M. 1983. Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19(2): 212235.CrossRefGoogle Scholar
Uemura, S., Tsuda, S., & Hasegawa, S. 1990. Effects of fire on the vegetation of Siberian taiga predominated by Larix dahurica. Canadian Journal of Forest Research 20: 547553.CrossRefGoogle Scholar
Vaskovskii, A.P. 1959. Genesis and geography of forest soils in the extreme northeast of the USSR. Kolyma Journal 1: 1523.Google Scholar
Vedrova, E.F., Shugalei, L.S. & Stakanov, V.D. 2002. The carbon balance in natural and disturbed forests of the southern taiga in central Siberia. Journal of Vegetation Science 13(3): 341350.CrossRefGoogle Scholar
Vlasenko, V. & Parfenova, E. 2005. Biodiversity of Sayano-Shushensky nature reserve. Ekologia(Bratislava)/Ecology(Bratislava) 24: 8088.Google Scholar
Wang, H.X., Zhu, J.J., Chen, Y.M., et al. 2005. Study on the growth of old Larix leptolepis stands in mountainous regions of eastern Liaoning Province. Forest Research 18: 524529.Google Scholar
Wang, Q., Wang, M. & Hao, J. 2012. Genetic variation in natural populations of prince Rupprecht’s larch (L. principis-rupprechtii) with elevation in Guandi Mountain, China. International Conference on Biomedical Engineering and Biotechnology, Macau, China.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wei, X. & Wang, X.-Q. 2003. Phylogenetic split of Larix: evidence from inherited cpDNA trnT–trnF region. Plant Systematics and Evolution 239: 6177.CrossRefGoogle Scholar
Wei, X. & Wang, X.-Q. 2004. Recolonization and radiation in Larix: evidence from nuclear ribosomal DNA paralogues. Molecular Ecology 13: 31153123.CrossRefGoogle ScholarPubMed
Wei, X., Liu, S., Zhou, G. & Wang, C. 2005. Hydrological processes in major types of Chinese forest. Hydrological Processes 19: 6375.CrossRefGoogle Scholar
Werner, K., Tarasov, P.E. Andreev, A.A., et al. 2009. A 12–5-kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verhoyansk Mountains, East Siberia, Russia. Boreas 39: 247261.Google Scholar
Wheeler, E.A. & ArnetteJr, C.G. 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International 22: 91102.CrossRefGoogle Scholar
Whitaker, A.C. & Sugiyama, H. 2005. Seasonal snowpack dynamics and runoff in a cool temperate forest: lysimeter experiment in Niigata, Japan. Hydrological Processes: An International Journal 19(20): 41794200.CrossRefGoogle Scholar
Whitlock, C. & Dawson, M.R. 1990. Pollen and vertebrates of the early Neogene Haughton Formation, Devon Island, Arctic Canada. Arctic 43: 324330.CrossRefGoogle Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Wohlfarth, B., Hannon, G., Feurdean, A., et al. 2001. Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (∼ 15,000–13,600 cal yr BP). Quaternary Science Reviews 20(18): 18971914.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Xiaodong, Y. & Shugart, H.H. 2005. FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography 32(9): 16411658.CrossRefGoogle Scholar
Xu, H. & Fan, Z. 1993. Age structure dynamics of virgin Larix gmelinii forest. Chinese Journal of Applied Ecology 4: 229233.Google Scholar
Yang, C. & Liu, G. 2001. Geographic variation of Larix olgensis. Chinese Journal of Applied Ecology 12: 801805.Google Scholar
Yang, G., Joo, Y.-C., Shibuya, M., Yajima, T. & Takashi, K. 1998. The occurrence and diversity of ectomycorrhizas of Larix kaempferi seedlings on a volcanic mountain in Japan. Mycological Research 102: 15031508.CrossRefGoogle Scholar
Yano, M. 1994. Variation of ‘Japanese larch’ cones at the northern limit of distribution, and its palaeobotanical implication. Quaternary Research (Tokyo) 33: 95105.CrossRefGoogle Scholar
Yu, D., Wang, S., Tang, L., et al. 2005. Relationship between tree-ring chronology of Larix olgensis in Changbei Mountains and the climate change. Chinese Journal of Applied Ecology 16: 1420.Google Scholar
Yura, H. 1988. Comparative ecophysiology of Larix kaempferi (Lamb.) Carr. and Abies veitchii Lindl. 1. Seedling establishment on bare ground on Mt. Fuji. Ecological Research 3: 6773.CrossRefGoogle Scholar
Zhang, W., Wang, Y. Kang, Y. & Liu, X. 2005. Spatial distribution pattern of Larix chinensis population on Taibai Mt. Chinese Journal of Applied Ecology 16: 207212.Google ScholarPubMed
Zhanqing, H. and Wang, L. 1998. Water conservation capacities of soil with major forest types in mountainous regions of eastern Liaoning Province. Chinese Journal of Applied Ecology 9(3): 237241.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Larix
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Larix
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Larix
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.009
Available formats
×