Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T16:02:14.395Z Has data issue: false hasContentIssue false

Chapter 7 - Abies

Pinales: Abietaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Moderate to large-sized, fast-growing, evergreen trees, mostly with dense, narrow, tapering pyramidal crowns. Leaves are ultimately shed cleanly by basal abscission zones which leave smooth, nearly circular scars to their shoots. Unlike Picea, leaves remain persistent on their shoots when branches are dried. Female cones are erect and seed liberation is by dismemberment of cone scales from the central columella, allowing both seed and scales to fall individually in the wind.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 188 - 207
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, T.A., Matthews, J.V. Jr. & Yeend, W. 1994. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: palynology, paleobotany, paleoenvironmental reconstruction and regional correlation. Quaternary International 22: 185206.CrossRefGoogle Scholar
Akkiraz, M.S., Akgun, F., Orcen, S., Bruch, A.A. & Mosbrugger, V. 2006. Stratigraphic and paleoenvironmental significance of Bartonian-Priabonian (Middle–Late Eocene) microfossils from the Bascesme formation, Denzil Province, western Anatolia. Turkish Journal of Earth Sciences 15: 155180.Google Scholar
Anderson, R.S. 1990. Holocene forest development and paleoclimates within the central Sierra Nevada, California. Journal of Ecology 78: 470489.CrossRefGoogle Scholar
Argant, A. 2004. Les Carnivores du gisement Pliocène final de Saint-Vallier (Drôme, France). Geobios 37: S133S182.CrossRefGoogle Scholar
Aubert, S., Belet, J.-M., Bouchette, A., et al. 2004. Dynamique tardiglaciaire et holocene de la vegetation a l’etage montagnard dans les Pyrenees centrales. Comptes Rendus, Biologies 327: 381388.CrossRefGoogle Scholar
Bertini, A. 2000. Pollen record from Colle Crti and Cesi: Early and Middle Pleistocene mammal sites in the Umbro-Marchean Apennine mountains (central Italy). Journal of Quaternary Science 15: 825.3.0.CO;2-6>CrossRefGoogle Scholar
Bertolani-Marchetti, D. & Lolli, F. 1983. Palinologia di una cava nell’alta pianura modenese in relazione a vicende ambientali coeve alla sedimentozione, e agli approti pollinici secondari di formazioni plioceniche [Modena – Italy]. Geograpfia Fisca e Dinamica Quaternaria 6: 4855.Google Scholar
Blinnikov, M., Busacca, A. & Whitlock, C. 2002. Reconstruction of the Late Pleistocene grassland of the Columbia Basin, Washington, USA, based on phytolith records in loess. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 77101.CrossRefGoogle Scholar
Blyakharchuk, T.A. & Sulerzhitsky, L.D. 1999. Holocene vegetational changes in the forest zone of western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. Holocene 9: 621628.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S. van der Knaap, W.O. & Ammann, B. 2004. Late Glacial and Holocene vegetational changes on the Ulgan high-mountain plateau, Altai Mountains, south Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 259279.CrossRefGoogle Scholar
Bogis, P. 2010. Where have all the monarchs gone ? Butterfly Observer 46: 67.Google Scholar
Browicz, K. 1982. Chlorology of Trees and Shrubs in South-West Asia. Vol. 1. Kórnik: Eigenverlag.Google Scholar
Brown, K.J. & Hebda, R.J. 2003. Coastal rainforest connections disclosed through Late Quaternary vegetation, climate and fire history investigation from the Mountain Hemlock zone on southern Vancouver Island, British Columbia, Canada. Review of Palaeobotany and Palynology 123: 247269.CrossRefGoogle Scholar
Budantsev, L. Yu. 1989. The fossil flora and phytostratigraphy of the Paleogene of Western Kamchatka. Pp. 1731 in Problems of Paleofloristics and Stratigraphy. Leningrad. [in Russian].Google Scholar
Budantsev, L. Yu. 1994. The fossil flora of the Paleogene climatic optimum in north eastern Asia. Pp 297307 in Boulter, M.C. & Fisher, H.C. (eds.) Cenozoic Plants and Climates of the Arctic. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Burckle, L.H. 1993. Late Quaternary interglacial stages warmer than present. Quaternary Science Reviews 12: 825831.CrossRefGoogle Scholar
Burjachs, F. 1994. Palynology of the Upper Pleistocene and Holocene of the north-east Iberian peninsula: Plka de l’estany (Catalonia). Historical Biology 9: 1733.CrossRefGoogle Scholar
Campbell, C.C., Hudton, W.F. & Sharp, A.J. 1964. Great Smoky Mountains Wildflowers. Tennessee: University of Tennessee Press.Google Scholar
Carriere, E.A. 1855. Traite General des Coniferes. Paris.Google Scholar
Clet, M., Occhietti, S. & Richards, P.J.H. 1991. Palynologie et lithostratigraphie du Pleistocene du site de Donnacona, Vallee du Saint-Laurent, Quebec. Geographie Physique et Quaternaire 45: 125140.CrossRefGoogle Scholar
Cleveringa, P., Meijer, T., Van Leeuwen, R.J.W., et al. 2000. The Eemian stratoype locality at Amersfoort in the central Netherlands: a re-evaluation of old new data. Netherlands Journal of Geosciences 79: 197216.CrossRefGoogle Scholar
Coode, M.J.E. & Cullen, J. 1965. Gymnospermae. Pp 6785 in Davis, P.H. (ed.) Flora of Turkey and the East Aegean Islands. Vol.1. Edinburgh: Edinburgh University Press.Google Scholar
Cwynar, L.C. 1987. Fire and forest history of the north Cascade Range. Ecology 68: 791802.CrossRefGoogle Scholar
Davis, O.K. 1998. Palynological evidence for vegetation cycles in a 1.5 million year pollen record from the Great Salt Lake, Utah, USA. Palaeogeography. Palaeoclimatology, Palaeoecology 138: 175185.CrossRefGoogle Scholar
Doit, M.F. 1999. Le Pleistocene de la facade Atlantique du Nord-Medoc (France): synthese sur la palynologie des ‘Argiles du Gurp’ s.l. et comparaison avec les donnees de l’Aquitaine. Quaternaire 10: 213225.CrossRefGoogle Scholar
Engelmann, G. 1878. A synopsis of the American Firs (Abies Link). Transactions St. Louis Academy of Science 3: 593602.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers of the Eocene thunder Mountain flora, Idaho, U.S.A. Review of Palaeobotany and Palynology 137: 125145.CrossRefGoogle Scholar
Fall, P.L. 1997. Timberline fluctuations and Late Quaternary paleoclimates in the southern rocky Mountains, Colorado. Geological Society of America Bulletin 109: 13061320.2.3.CO;2>CrossRefGoogle Scholar
Farjon, A. & Page, C.N. 1999. Conifers: Status Survey and Conservation Action Plan. Gland: International Union for the Conservation of Nature.Google Scholar
Farjon, A. & Rushforth, K.D. 1989. A classification of Abies Miller (Pinaceae). Notes of the Royal Botanic Garden Edinburgh 46: 5979.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography. Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Field, M.H., De Beaulieu, J.L., Guiot, J. & Ponel, P. 2000. Middle Pleistocene deposits at La Cote, Val-de-Lans, isere department, France: plant macrofossil, palynological and fossil insect investigations. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 5383.CrossRefGoogle Scholar
Florin, R. 1934. Dr. H. Smith’s botanical expedition to western China in 1934: enumeration of gymnosperms. Acta Horti Bergiani 14(8): 343384.Google Scholar
Florin, R. 1948. Enumeration of gymnosperms collected on Swedish expeditions to western and north-western China in 1930–1934. Acta Horti Bergiana 14: 343384.Google Scholar
Franco, J. do A. 1950. Abetos. Lisboa.Google Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic Peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Gordon, G. 1858. The Pinetum. London.Google Scholar
Graham, A. 1989. Late Tertiary paleolatitudes and vegetational zonation in Mexico and Central America. Acta Botanica Neerlandica 38: 417424.CrossRefGoogle Scholar
Graham, A. 1993. Historical factors and biological diversity in Mexico. Pp 109127 in Ramamoorthy, T.P. et al., (eds.), Biological Diversity in Mexico. Oxford: Oxford University Press.Google Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W. & Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Science 42: 167185.CrossRefGoogle Scholar
Gruger, E. 1995. Correlation of Middle-European Late-Pleistocene pollen sequences of the Pfefferbichl und Zeifen types. Meddelingen, Rijks Geologische Dienst 52: 97104.Google Scholar
Gudoshnikov, S.V. 1981. On the origin of the mountain taiga with Abies sibirica from the south of Siberia. Botanicheskiy Zhurnal 66: 341352 [in Russian].Google Scholar
Han, H.-Y. & Yu, J.-B. 1988. Pollen analysis and paleoenvironment study of Late Pleistocene. Acta Botanica Sinica 30: 7684.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in southern Kyush, Japan. Quaternary Research (Tokyo) 23: 120.CrossRefGoogle Scholar
Hickel, R. 1906–1908. Notes pour servir a la determination practique des Abietinees. Bulletin Societe Dendrologique France 2: 4558, 3: 5–18, 4: 41–48, 5: 82–86, 7: 5–10, 9: 179–185, 10: 201–208.Google Scholar
Hu, S.Y. 1964. Notes on the flora of China. IV. Gymnospermae. Taiwania 10: 1362.Google Scholar
Hutton, M.J., MacDonald, G.M. & Mott, R.J. 1994. Postglacial vegetation history of the Mariana Lake region, Alberta. Canadian Journal of Earth Sciences 31: 418425.CrossRefGoogle Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13: 335344.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1986. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 2. Aihmu-Innai area (Upper Pleistocene). Journal Geological Society of Japan 92: 591598.Google Scholar
Iwauchi, A. & Hase, Y. 1987. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 3. Southern part of Kusu Basin (Lower and Middle Pleistocene). Journal Geological Society of Japan 93: 469489.Google Scholar
Iwauchi, A. & Hase, Y. 1989. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 4 Oyama-Tsuetate area (Lower Pleistocene). Journal Geological Society of Japan 93: 469489.Google Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jackson, S.T., Overpeck, J.T., Webb, T. III, Keattch, S.E. & Anderson, K.H. 1997. Mapped plant-macrofossils and pollen records of Late Quaternary vegetation change in eastern North America. Quaternary Science Reviews 16: 170.CrossRefGoogle Scholar
Jha, M.N., Rathore, R.K. & Pande, P. 1984. Soil factors effecting the natural regeneration of Silver Fir in Himachal Pradesh. Indian Journal of Forestry 110: 293298.Google Scholar
Kamoi, Y., Saito, M., Fujita, H. & Kobayashi, I. 1988. Plant fossil assemblage of the Last Glacial age in the northern part of Nigata Prefecture, central Japan. Quaternary Research (Tokyo) 27: 2129.CrossRefGoogle Scholar
Kong, Z.-C & Du, N.-Q. 1984. The macrofossilplants and pollen assemblages in the last Glacial in Sanjiang Plain. Scientia Geographica Sinica 4: 7680.Google Scholar
Kong, Z.-C, Du, N.-Q. & Zhang, Z.-B. 1982. Vegetational development and climatic changes in the last 10 000 years in Beijing. Acta Botanica Sinica 24: 172181.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxonomica Sinica 29: 393407.Google Scholar
Li, X.-Q, Li, C.-S., Lu, H.-Y, Dodson, J.R. & Wang, Y.-F. 2004. Paleovegetation and paleoclimate in Middle-Late Pliocene, Shanxi, central China. Palaeogeography, Palaeoclimatology, Palaeoecology 210: 5766.CrossRefGoogle Scholar
Liu, T.S. 1971. A Monograph of the Genus Abies. Taipei: Department of Forestry, College of Agriculture, National Taiwan University.Google Scholar
Matsushita, M. 1989. Holocene vegetation history in Haibara on Omaezaki Point, central Japan. Japanese Journal of Ecology 39: 183188.Google Scholar
Matsushita, M. 1990. Holocene vegetation history of the Matsuzaki Lowland on the Izu Peninsula, central Japan. Japanese Journal of Ecology 40: 15.Google Scholar
Matzenko, A.E. 1957. Abieties geronotogeae clavis analytica. Notes Systematic Leningrad 18: 311315.Google Scholar
Matzenko, A.E. 1963. Observations on the genus Abies Mill. Bot. Mater. Gerb. Botanical Institute Komarova Akad. Naauk. SSSR 22: 33-42 [in Russian].Google Scholar
Matzenko, A.E. 1964. The firs of the eastern hemisphere. Trudy Botanical Institute Akad. Nauk. SSSR 1: 13 [in Russian].Google Scholar
Matzenko, A.E. 1968. Novitates systematicae plantarum vascularlum, series novae generis Abies Mill. Leningrad [in Latin and Russian].Google Scholar
Mayr, H. 1890. Monographie der Abietineen des Japanischen Reiches. Munchen.Google Scholar
McVaugh, R. 1992. Flora Novo-Galiciana: A Descriptive Account of the Vascular Plants of Western Mexico. Vol. 17: Gymnosperms and Pteridophytes. Ann Arbor: University of Michigan Herbarium.Google Scholar
Moss, P.T., Greenwood, D.R. & Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okangan Highlands (British Columbia – Washington State) from palynology. Canadian Journal of Earth Science 42: 187204.CrossRefGoogle Scholar
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. Quaternary Research (Tokyo) 31: 389397.CrossRefGoogle Scholar
Nemeth, K., Martin, U. & Phillippe, M. 1999. Eroded porus-media aquifer controlled hydrovolcanic centers in the south Lake Balaton region, Hungary: the Bolgar Volcano. Acta Geologica Hungarica 42: 251266.Google Scholar
Nicol-Pichard, S. 1985. Analyse pollinique sur materiel carotte en site archeologique (caune de l’Arago, Tautavel, Pyrenees-Orientakes). Comptes Rendus, Academie des Sciences, Serie II, 300: 10391044.Google Scholar
Noshioro, S., Terada, K., Tsuji, S.I., & Suzuki, M. 1997. LarixPicea forests of the last Glacial age on the eastern slope of Towada volcano in northern Japan. Review of Palaeobotany and Palynology 98: 207222.CrossRefGoogle Scholar
O’Brien, C.E. & Jones, R.L. 2003. Early and Middle Pleistocene vegetation history of the Medoc region, southwest France. Journal of Quaternary Science 18: 557579.CrossRefGoogle Scholar
Okuda, M., Yasuda, Y. & Setoguchi, T. 2001. Middle to Late Pleistocene vegetation history and climatic changes at Lake Kopais, southeast Greece. Boreas 30: 7382.CrossRefGoogle Scholar
Okuda, M., Nakazato, H., Miyoshi, N., et al. 2006. MIS11–19 pollen stratigraphy from the 250-m Chosi core, northeast Boso peninsula, central Japan: implication for the early/mid-Bruhes (400–780 ka) climate signals. Island-Arc 15: 338354.CrossRefGoogle Scholar
Ooi, N., Minaki, M. & Noshiro, S. 1990. Vegetation changes around the last Glacial Maximum and effects of the Aira-Tn ash, at the Itagi-Teragatani site, central Japan. Ecological Research 5: 8191.Google Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Patschke, W. 1913. Uber die extratropischen ostasiatischen Koniferen und ihre Bedeutung fur die Pflanzengeographische Gliederung ostasiens. Botanisches Jahrbucher Systematic 48: 626776.Google Scholar
Paudayal, K.N. 2005. Late Pleistocene assemblages from the Thimi Formation, Kathmandu Valley, Nepal. Island-Arc 14: 328337.CrossRefGoogle Scholar
Porsild, A.E. & Cody, W.J. 1980. Vascular Plants of Continental North-West Territories, Canada. Ottawa: National Museum of Natural Sciences.CrossRefGoogle Scholar
Rushforth, K. 1987. Conifers. London: Christopher Helm.Google Scholar
Rushforth, K.D. 1976. Tree genera – 5. The Silver Firs – Abies. Arboricultural Journal 3: 3746.CrossRefGoogle Scholar
Rushforth, K.D. 1986. Notes on Chinese Silver Firs. 3. Notes of the Royal Botanic Garden Edinburgh 43: 269275.Google Scholar
Rypins, S., Reneau, S.L., Byrne, R. & Montgomery, D.R. 1989. Palynological and geomorphic evidence for environmental change during the Pleistocene–Holocene transition at Point Reyes Peninsula, central coastal California. Quaternary Research 32: 7287.CrossRefGoogle Scholar
Sahni, K.C. 1990. Gymnosperms of India and Adjacent Countries. Dehradun: Bishen Singh and Mahendra Pal Singh India.Google Scholar
Sanchez, X.M. 1964. Contribucion al conciamiento de la ecologia de los bosques de Oyamel (Abies religiosa) (H.B.K.) Schl. et Cham. en la Valle de Mexico. PhD thesis. Instituto Politenico Nacional, Mexico.Google Scholar
Sargent, C.S. 1898. The Silva of North America. Vol. 12. Boston.Google Scholar
Sasaki, N. 2003. A 700-year landscape history of dwarf bamboo (Sasa): Nikko fir community in the sub-alpine zone of Mt. Kemegamori, Shikoku Island, Japan. Japanese Journal of Ecology 53: 219232.Google Scholar
Savvinova, G.M. 1985. Pleistocene and Holocene vegetation on the upper reaches of the Indigirka and Kolyma Rivers. Pp 211213 in Kontrimavichus, V.L. (ed.), Beringia in the Cenozoic Era. London: Balkema.Google Scholar
Schubert, B.W., Graham, R.W., McDonald, H.G., Grimm, E.C. & Stafford, T.W. Jr. 2004. Latest Pleistocene paleoecology of Jeferson’s Ground Sloth (Megalonyx x jefersonii) and Elk-moose (Cervalces scotti) in northern Illinois. Quaternary Research 61: 231240.CrossRefGoogle Scholar
Sea, D.S. & Whitlock, C. 1995. Postglacial vegetation and climate of the Cascade Range, central Oregon. Quaternary Research 43: 370381.CrossRefGoogle Scholar
Shi, N., Cao, J.-X. & Konigsson, L.K. 1993. Late Cenozoic vegetational history and the Pliocene–Pleistocene boundary in the Yushe Basin, S.E. Shanxi, China. Grana 32: 260271.Google Scholar
Shumilova, L.V. 1962. Botanicheskaya Geografiya Sibiri. Tomsk: Tomsk University Press [in Russian].Google Scholar
Silba, J. 1981. Revised generic concepts of Cupressus L. (Cupressaceae). Phytologia 49: 340399.Google Scholar
Spach, E. 1842. Histoire Naturelle des Vegetaux – Phanerogames. Vol. 11. Paris.Google Scholar
Stefanova, I. & Ammann, B. 2003. Lateglacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). Holocene 13: 97107.CrossRefGoogle Scholar
Tao, J.-N. & Du, N.-Q. 1987. Miocene flora from Markam County and fossil record of Betulaceae (Tibet, P.R.C.). Acta Botanica Sinica 29: 649655.Google Scholar
Terada, K., Ohta, S., Suzuki, M., Noshiro, S. & Tsuji, S. 1994. Dendrochronology of forests buried in Hachinohe tephra on the eastern slope of Towada volcano, northern Japan. Quaternary Research (Tokyo) 33: 153164.CrossRefGoogle Scholar
Thomas, L.F., Hodgkiss, P.D. & Johnson, D.R. 2006. Genetic diversity and seed production in Sanat Lucia fir (Abies bracteata), a relict of the Miocene broadleaved evergreen forest. Conservation Genetics 7: 383398.CrossRefGoogle Scholar
Thompson, R.S. & Mead, J.I. 1982. Late Quaternary environments and biogeography in the Great Basin. Quaternary Research 17: 3955.CrossRefGoogle Scholar
Tiegham, Ph. Van 1891. Structures et affinities des Abies et des genres les plus voisins. Bulletin Societe Botanique de France 38: 406416.CrossRefGoogle Scholar
Troup, R.S. 1921. The Silviculture of Indian Trees, Volume I. Dehradun: International Book Distributors.Google Scholar
Tsukada, M. 1985. Map of vegetation during the last glacial maximum in Japan. Quaternary Research 23: 369381.CrossRefGoogle Scholar
Tzedakis, P.C. 1993. Long-term tree populations in northwest Greece through multiple Quaternary cycles. Nature 364: 437440.CrossRefGoogle Scholar
Tzedakis, P.C. 1994. The last climatic cycle at Kopais, central Greece. Journal of the Geological Society of London 156: 425434.CrossRefGoogle Scholar
Tzedakis, P.C. & Bennett, K.D. 1995. Interglacial vegetation succession: a view from southern Europe. Quaternary Science Reviews 14: 967982.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Velenovsky, J. 1885. Die Gymnospermen der bohemishen Kreideformation. Prague.CrossRefGoogle Scholar
Viereck, L.A. & Little, E.L. Jr. 1972. Alaska Trees and Shrubs. Washington, DC: USDA.Google Scholar
Wang, K., Zhang, Y. & Jiang, H. 1983. Spore-pollen assemblages from the Quaternary sediments of Taihu (Lake) and its paleovegetation and paleoclimate. Scientia Geographica Sinica 3: 1726.Google Scholar
Wang, W.M. 2006. Correlation of pollen sequences in the Neogene palynofloristic regions of China. Palaeoworld 15: 7799.CrossRefGoogle Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.-Q., Han, Y. & Hong, D. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46: 265271.CrossRefGoogle Scholar
Wang, X.-Q., Tank, D.C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle Scholar
Webb, T. III, 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio 69: 177187.CrossRefGoogle Scholar
Whitlock, C. 1993. Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks. Ecological Monographs 63: 173198.CrossRefGoogle Scholar
Whitney, S. 1942. Western Forests. New York: Alfred Knopf.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Harvard University Press.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Wu, Y.-S., Chen, Y.-S. & Xiao, J.-Y. 1991. A preliminary study on vegetation and climate changes in Dianchi Lake area in the last 40 000 years. Acta Botanica Sinica 33: 450458.Google Scholar
Xu, J.-X., Wang, Y.-F., Du, N.-Q. & Zhang, C.-F. 2000. The Neogene pollen/spore flora of Luhe, Yunnan. Acta Botanica Sinica 42: 526532.Google Scholar
Yan, S., Mu, G., Xu, Y. & Zhao, Z. 1998. Quaternary environmental evolution of the Lop Nur region, China. Acta Geographioca Sinica 53: 332340.Google Scholar
Yll, R., Carrion, J.S., Marra, A.C. & Bonfiglio, L. 2006. Vegetation reconstruction on the basis of pollen in Late Pleistocene hyena coprolites from San Teodoro Cave (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 237: 3239.CrossRefGoogle Scholar
Yonebayashi, C. & Minaki, M. 1997. Late Quaternary vegetation and climatic history of eastern Nepal. Journal of Biogeography 24: 837843.CrossRefGoogle Scholar
Yoshinori, Y., Nitsuma, N. & Hayashida, A. 1991. A pollen analysis of the Indus Deep Sea Fan from site 720 cores. Pp 283290 in Prel, W.L. (ed.), Proceedings of the Ocean Drilling Program, Scientific Results. Texas: Texas A&M University.Google Scholar
Zhang, S.-Q., Wang, Y.-G., Xin, Y.-H., et al. 2006. Discovery of Early Pleistocene strata containing plant fossils in the source area of the Yellow River and significance. Geology in China 33: 7885.Google Scholar
Zhao, H. & Zhou, D. 2006. Pollen assemblage and palaeo-vegetation of late Holocene fen in Dunhua of Jilin Province. Chinese Journal of Applied Ecology 17: 197200.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Abies
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Abies
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Abies
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.011
Available formats
×