Published online by Cambridge University Press: 05 June 2012
After Gödel proved the consistency of the continuum hypothesis with set theory, many people expected him also to prove its independence, but it was Paul Cohen who did so. There is a story, perhaps apocryphal, as such stories sometimes are, that Cohen passed by Georg Kreisel’s office at Stanford in the spring and asked for a problem to work on. To get rid of Cohen, Kreisel gave him the independence of the continuum hypothesis, and by the next fall Cohen had solved it. There is another story, certainly apocryphal, that after Gödel heard of Cohen’s success, Gödel feared that the Institute for Advanced Studies would fire him and he would starve to death as an old man. This story may be a garbled version of Gödel’s decline after the death of his wife, who had looked after him well.
We will show that if ZF is consistent, it remains so even with the addition of a sentence saying there is a nonconstructible set of natural numbers, so V = L is independent. We will show that if ZF is consistent, it remains so with the addition of a sentence saying there is a set of sets of natural numbers that is not well-ordered, so the axiom of choice is independent. We will show that if ZF is consistent, it remains so with the addition of the denial of the continuum hypothesis, so the generalized continuum hypothesis is independent. We will make constant use of the constructible sets from the last chapter, and, as there, our exposition will follow lectures given by Hilary Putnam at Harvard in the spring of 1968.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.