Book contents
- Frontmatter
- Contents
- Introduction
- 1 Hidden Markov processes in the context of symbolic dynamics
- 2 On the preservation of Gibbsianness under symbol amalgamation
- 3 A note on a complex Hilbert metric with application to domain of analyticity for entropy rate of hidden Markov processes
- 4 Bounds on the entropy rate of binary hidden Markov processes
- 5 Entropy rate for hidden Markov chains with rare transitions
- 6 The capacity of finite-state channels in the high-noise regime
- 7 Computing entropy rates for hidden Markov processes
- 8 Factors of Gibbs measures for full shifts
- 9 Thermodynamics of hidden Markov processes
Introduction
Published online by Cambridge University Press: 05 June 2011
- Frontmatter
- Contents
- Introduction
- 1 Hidden Markov processes in the context of symbolic dynamics
- 2 On the preservation of Gibbsianness under symbol amalgamation
- 3 A note on a complex Hilbert metric with application to domain of analyticity for entropy rate of hidden Markov processes
- 4 Bounds on the entropy rate of binary hidden Markov processes
- 5 Entropy rate for hidden Markov chains with rare transitions
- 6 The capacity of finite-state channels in the high-noise regime
- 7 Computing entropy rates for hidden Markov processes
- 8 Factors of Gibbs measures for full shifts
- 9 Thermodynamics of hidden Markov processes
Summary
This volume is a collection of papers on hidden Markov processes (HMPs) involving connections with symbolic dynamics and statistical mechanics. The subject was the focus of a five-day workshop held at the Banff International Research Station (BIRS) in October 2007, which brought together thirty mathematicians, computer scientists, and electrical engineers from institutions throughout the world. Most of the papers in this volume are based either on work presented at the workshop or on problems posed at the workshop.
From one point of view, an HMP is a stochastic process obtained as the noisy observation process of a finite-state Markov chain; a simple example is a binary Markov chain observed in binary symmetric noise, i.e., each symbol (0 or 1) in a binary state sequence generated by a two-state Markov chain may be flipped with some small probability, independently from time instant to time instant. In another (essentially equivalent) viewpoint, an HMP is a process obtained from a finite-state Markov chain by partitioning its state set into groups and completely “hiding” the distinction among states within each group; more precisely, there is a deterministic function on the states of the Markov chain, and the HMP is the process obtained by observing the sequences of function values rather than sequences of states (and hence such a process is sometimes called a “function of a Markov chain”).
HMPs are encountered in an enormous variety of applications involving phenomena observed in the presence of noise.
- Type
- Chapter
- Information
- Entropy of Hidden Markov Processes and Connections to Dynamical SystemsPapers from the Banff International Research Station Workshop, pp. 1 - 4Publisher: Cambridge University PressPrint publication year: 2011