Book contents
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- 121 Introductory Essay: The Endothelium in Health and Disease
- 122 Hereditary Hemorrhagic Telangiectasia: A Model to Probe the Biology of the Vascular Endothelium
- 123 Blood–Brain Barrier
- 124 Brain Endothelial Cells Bridge Neural and Immune Networks
- 125 The Retina and Related Hyaloid Vasculature: Developmental and Pathological Angiogenesis
- 126 Microheterogeneity of Lung Endothelium
- 127 Bronchial Endothelium
- 128 The Endothelium in Acute Respiratory Distress Syndrome
- 129 The Central Role of Endothelial Cells in Severe Angioproliferative Pulmonary Hypertension
- 130 Emphysema: An Autoimmune Vascular Disease?
- 131 Endothelial Mechanotransduction in Lung: Ischemia in the Pulmonary Vasculature
- 132 Endothelium and the Initiation of Atherosclerosis
- 133 The Hepatic Sinusoidal Endothelial Cell
- 134 Hepatic Macrocirculation: Portal Hypertension As a Disease Paradigm of Endothelial Cell Significance and Heterogeneity
- 135 Inflammatory Bowel Disease
- 136 The Vascular Bed of Spleen in Health and Disease
- 137 Adipose Tissue Endothelium
- 138 Renal Endothelium
- 139 Uremia
- 140 The Influence of Dietary Salt Intake on Endothelial Cell Function
- 141 The Role of the Endothelium in Systemic Inflammatory Response Syndrome and Sepsis
- 142 The Endothelium in Cerebral Malaria: Both a Target Cell and a Major Player
- 143 Hemorrhagic Fevers: Endothelial Cells and Ebola-Virus Hemorrhagic Fever
- 144 Effect of Smoking on Endothelial Function and Cardiovascular Disease
- 145 Disseminated Intravascular Coagulation
- 146 Thrombotic Microangiopathy
- 147 Heparin-Induced Thrombocytopenia
- 148 Sickle Cell Disease Endothelial Activation and Dysfunction
- 149 The Role of Endothelial Cells in the Antiphospholipid Syndrome
- 150 Diabetes
- 151 The Role of the Endothelium in Normal and Pathologic Thyroid Function
- 152 Endothelial Dysfunction and the Link to Age-Related Vascular Disease
- 153 Kawasaki Disease
- 154 Systemic Vasculitis Autoantibodies Targeting Endothelial Cells
- 155 High Endothelial Venule-Like Vessels in Human Chronic Inflammatory Diseases
- 156 Endothelium and Skin
- 157 Angiogenesis
- 158 Tumor Blood Vessels
- 159 Kaposi's Sarcoma
- 160 Endothelial Mimicry of Placental Trophoblast Cells
- 161 Placental Vasculature in Health and Disease
- 162 Endothelialization of Prosthetic Vascular Grafts
- 163 The Endothelium's Diverse Roles Following Acute Burn Injury
- 164 Trauma-Hemorrhage and Its Effects on the Endothelium
- 165 Coagulopathy of Trauma: Implications for Battlefield Hemostasis
- 166 The Effects of Blood Transfusion on Vascular Endothelium
- 167 The Role of Endothelium in Erectile Function and Dysfunction
- 168 Avascular Necrosis: Vascular Bed/Organ Structure and Function in Health and Disease
- 169 Molecular Control of Lymphatic System Development
- 170 High Endothelial Venules
- 171 Hierarchy of Circulating and Vessel Wall–Derived Endothelial Progenitor Cells
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
155 - High Endothelial Venule-Like Vessels in Human Chronic Inflammatory Diseases
from PART III - VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- 121 Introductory Essay: The Endothelium in Health and Disease
- 122 Hereditary Hemorrhagic Telangiectasia: A Model to Probe the Biology of the Vascular Endothelium
- 123 Blood–Brain Barrier
- 124 Brain Endothelial Cells Bridge Neural and Immune Networks
- 125 The Retina and Related Hyaloid Vasculature: Developmental and Pathological Angiogenesis
- 126 Microheterogeneity of Lung Endothelium
- 127 Bronchial Endothelium
- 128 The Endothelium in Acute Respiratory Distress Syndrome
- 129 The Central Role of Endothelial Cells in Severe Angioproliferative Pulmonary Hypertension
- 130 Emphysema: An Autoimmune Vascular Disease?
- 131 Endothelial Mechanotransduction in Lung: Ischemia in the Pulmonary Vasculature
- 132 Endothelium and the Initiation of Atherosclerosis
- 133 The Hepatic Sinusoidal Endothelial Cell
- 134 Hepatic Macrocirculation: Portal Hypertension As a Disease Paradigm of Endothelial Cell Significance and Heterogeneity
- 135 Inflammatory Bowel Disease
- 136 The Vascular Bed of Spleen in Health and Disease
- 137 Adipose Tissue Endothelium
- 138 Renal Endothelium
- 139 Uremia
- 140 The Influence of Dietary Salt Intake on Endothelial Cell Function
- 141 The Role of the Endothelium in Systemic Inflammatory Response Syndrome and Sepsis
- 142 The Endothelium in Cerebral Malaria: Both a Target Cell and a Major Player
- 143 Hemorrhagic Fevers: Endothelial Cells and Ebola-Virus Hemorrhagic Fever
- 144 Effect of Smoking on Endothelial Function and Cardiovascular Disease
- 145 Disseminated Intravascular Coagulation
- 146 Thrombotic Microangiopathy
- 147 Heparin-Induced Thrombocytopenia
- 148 Sickle Cell Disease Endothelial Activation and Dysfunction
- 149 The Role of Endothelial Cells in the Antiphospholipid Syndrome
- 150 Diabetes
- 151 The Role of the Endothelium in Normal and Pathologic Thyroid Function
- 152 Endothelial Dysfunction and the Link to Age-Related Vascular Disease
- 153 Kawasaki Disease
- 154 Systemic Vasculitis Autoantibodies Targeting Endothelial Cells
- 155 High Endothelial Venule-Like Vessels in Human Chronic Inflammatory Diseases
- 156 Endothelium and Skin
- 157 Angiogenesis
- 158 Tumor Blood Vessels
- 159 Kaposi's Sarcoma
- 160 Endothelial Mimicry of Placental Trophoblast Cells
- 161 Placental Vasculature in Health and Disease
- 162 Endothelialization of Prosthetic Vascular Grafts
- 163 The Endothelium's Diverse Roles Following Acute Burn Injury
- 164 Trauma-Hemorrhage and Its Effects on the Endothelium
- 165 Coagulopathy of Trauma: Implications for Battlefield Hemostasis
- 166 The Effects of Blood Transfusion on Vascular Endothelium
- 167 The Role of Endothelium in Erectile Function and Dysfunction
- 168 Avascular Necrosis: Vascular Bed/Organ Structure and Function in Health and Disease
- 169 Molecular Control of Lymphatic System Development
- 170 High Endothelial Venules
- 171 Hierarchy of Circulating and Vessel Wall–Derived Endothelial Progenitor Cells
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
Summary
HISTORY OF HIGH ENDOTHELIAL VENULE-LIKE VESSELS IN RHEUMATOID ARTHRITIS AND OTHER HUMAN CHRONIC INFLAMMATORY DISEASES
High endothelial venules (HEVs) are anatomically distinct postcapillary venules found in lymphoid organs. They support high levels of lymphocyte extravasation fromthe blood (1–3). The precise relationship between the structure and function of these specialized blood vessels has intrigued and fascinated many investigators over the past 100 years. The peculiar structure of HEVs in lymph nodes from Macacus cynomolgus was first observed by Thome in 1898 (4). He described these vessels as being composed of plump, cuboidal endothelial cells (ECs) whose surface strongly bulges into the vascular lumen. These ECs looked like columnar epithelial cells and Thome wrote that, at first notice, one is more inclined to think of the duct of a gland rather than that of a blood vessel. It is this cuboidal or columnar appearance that has given rise to the names high ECs and high endothelial venules. The observations of Thome were confirmed in other species, including human, by von Schumacher, who was the first to note the presence of numerous lymphocytes within the wall of HEVs (5). Vessels of the HEV type, characterized by a plump endothelial lining with many adherent and infiltrating lymphocytes, were later observed in Peyer patches and tonsils. Although the occurrence of lymphocytes within HEV walls was first noted in 1899 (5), the direction and physiological significance of lymphocyte migration through HEVs was not fully appreciated until the classical autoradiographic experiments of Gowans and Knight (6).
- Type
- Chapter
- Information
- Endothelial Biomedicine , pp. 1419 - 1430Publisher: Cambridge University PressPrint publication year: 2007
- 1
- Cited by