Book contents
- Frontmatter
- PREFACE
- PREFACE TO SECOND EDITION
- Contents
- REFERENCES
- Chap. I Introduction
- Chap. II Bernoulli's Equation
- Chap. III The Stream Function
- Chap. IV Circulation and Vorticity
- Chap. V The Velocity Potential and the Potential Function
- Chap. VI The Transformation of a Circle into an Aerofoil
- Chap. VII The Aerofoil in Two Dimensions
- Chap. VIII Viscosity and Drag
- Chap. IX The Basis of Aerofoil Theory
- Chap. X The Aerofoil in Three Dimensions
- Chap. XI The Monoplane Aerofoil
- Chap. XII The Flow round an Aerofoil
- Chap. XIII Biplane Aerofoils
- Chap. XIV Wind Tunnel Interference on Aerofoils
- Chap. XV The Airscrew: Momentum Theory
- Chap. XVI The Airscrew: Blade Element Theory
- Chap. XVII The Airscrew: Wind Tunnel Interference
- Appendix
- Bibliography
- Index
Chap. II - Bernoulli's Equation
Published online by Cambridge University Press: 01 June 2011
- Frontmatter
- PREFACE
- PREFACE TO SECOND EDITION
- Contents
- REFERENCES
- Chap. I Introduction
- Chap. II Bernoulli's Equation
- Chap. III The Stream Function
- Chap. IV Circulation and Vorticity
- Chap. V The Velocity Potential and the Potential Function
- Chap. VI The Transformation of a Circle into an Aerofoil
- Chap. VII The Aerofoil in Two Dimensions
- Chap. VIII Viscosity and Drag
- Chap. IX The Basis of Aerofoil Theory
- Chap. X The Aerofoil in Three Dimensions
- Chap. XI The Monoplane Aerofoil
- Chap. XII The Flow round an Aerofoil
- Chap. XIII Biplane Aerofoils
- Chap. XIV Wind Tunnel Interference on Aerofoils
- Chap. XV The Airscrew: Momentum Theory
- Chap. XVI The Airscrew: Blade Element Theory
- Chap. XVII The Airscrew: Wind Tunnel Interference
- Appendix
- Bibliography
- Index
Summary
Stream lines and steady motion.
When a body moves through a fluid with uniform velocity V in a definite direction, the conditions of the flow are exactly the same as if the body were at rest in a uniform stream of velocity V, and it is usually more convenient to consider the problem in the second form. In general therefore the body will be regarded as fixed and the motion of the fluid will be determined relative to the body. A representation of the flow past a body at any instant can be obtained by drawing the stream lines, which are defined by the condition that the direction of a stream line at any point is the direction of motion of the fluid element at that point. In general, the form of the stream lines will vary with the time and so the stream lines are not identical with the paths of the fluid elements. Frequently, however, the flow pattern does not vary with the time and the velocity is constant in magnitude and direction at every point of the fluid. The fluid is then in steady motion past the body and the stream lines coincide with the paths of the fluid elements. The stream lines which pass through the circumference of a small closed curve form a cylindrical surface which is called a stream tube, and since the stream lines represent the direction of motion of the fluid there is no flow across the surface of a stream tube.
- Type
- Chapter
- Information
- The Elements of Aerofoil and Airscrew Theory , pp. 10 - 17Publisher: Cambridge University PressPrint publication year: 1983