Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The developmental origins of health and disease: an overview
- 2 The ‘developmental origins’ hypothesis: epidemiology
- 3 The conceptual basis for the developmental origins of health and disease
- 4 The periconceptional and embryonic period
- 5 Epigenetic mechanisms
- 6 A mitochondrial component of developmental programming
- 7 Role of exposure to environmental chemicals in developmental origins of health and disease
- 8 Maternal nutrition and fetal growth and development
- 9 Placental mechanisms and developmental origins of health and disease
- 10 Control of fetal metabolism: relevance to developmental origins of health and disease
- 11 Lipid metabolism: relevance to developmental origins of health and disease
- 12 Prenatal hypoxia: relevance to developmental origins of health and disease
- 13 The fetal hypothalamic–pituitary–adrenal axis: relevance to developmental origins of health and disease
- 14 Perinatal influences on the endocrine and metabolic axes during childhood
- 15 Patterns of growth: relevance to developmental origins of health and disease
- 16 The developmental environment and the endocrine pancreas
- 17 The developmental environment and insulin resistance
- 18 The developmental environment and the development of obesity
- 19 The developmental environment and its role in the metabolic syndrome
- 20 Programming the cardiovascular system
- 21 The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies
- 22 The developmental environment and atherogenesis
- 23 The developmental environment, renal function and disease
- 24 The developmental environment: effect on fluid and electrolyte homeostasis
- 25 The developmental environment: effects on lung structure and function
- 26 Developmental origins of asthma and related allergic disorders
- 27 The developmental environment: influences on subsequent cognitive function and behaviour
- 28 The developmental environment and the origins of neurological disorders
- 29 The developmental environment: clinical perspectives on effects on the musculoskeletal system
- 30 The developmental environment: experimental perspectives on skeletal development
- 31 The developmental environment and the early origins of cancer
- 32 The developmental environment: implications for ageing and life span
- 33 Developmental origins of health and disease: implications for primary intervention for cardiovascular and metabolic disease
- 34 Developmental origins of health and disease: public-health perspectives
- 35 Developmental origins of health and disease: implications for developing countries
- 36 Developmental origins of health and disease: ethical and social considerations
- 37 Past obstacles and future promise
- Index
- References
23 - The developmental environment, renal function and disease
Published online by Cambridge University Press: 08 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The developmental origins of health and disease: an overview
- 2 The ‘developmental origins’ hypothesis: epidemiology
- 3 The conceptual basis for the developmental origins of health and disease
- 4 The periconceptional and embryonic period
- 5 Epigenetic mechanisms
- 6 A mitochondrial component of developmental programming
- 7 Role of exposure to environmental chemicals in developmental origins of health and disease
- 8 Maternal nutrition and fetal growth and development
- 9 Placental mechanisms and developmental origins of health and disease
- 10 Control of fetal metabolism: relevance to developmental origins of health and disease
- 11 Lipid metabolism: relevance to developmental origins of health and disease
- 12 Prenatal hypoxia: relevance to developmental origins of health and disease
- 13 The fetal hypothalamic–pituitary–adrenal axis: relevance to developmental origins of health and disease
- 14 Perinatal influences on the endocrine and metabolic axes during childhood
- 15 Patterns of growth: relevance to developmental origins of health and disease
- 16 The developmental environment and the endocrine pancreas
- 17 The developmental environment and insulin resistance
- 18 The developmental environment and the development of obesity
- 19 The developmental environment and its role in the metabolic syndrome
- 20 Programming the cardiovascular system
- 21 The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies
- 22 The developmental environment and atherogenesis
- 23 The developmental environment, renal function and disease
- 24 The developmental environment: effect on fluid and electrolyte homeostasis
- 25 The developmental environment: effects on lung structure and function
- 26 Developmental origins of asthma and related allergic disorders
- 27 The developmental environment: influences on subsequent cognitive function and behaviour
- 28 The developmental environment and the origins of neurological disorders
- 29 The developmental environment: clinical perspectives on effects on the musculoskeletal system
- 30 The developmental environment: experimental perspectives on skeletal development
- 31 The developmental environment and the early origins of cancer
- 32 The developmental environment: implications for ageing and life span
- 33 Developmental origins of health and disease: implications for primary intervention for cardiovascular and metabolic disease
- 34 Developmental origins of health and disease: public-health perspectives
- 35 Developmental origins of health and disease: implications for developing countries
- 36 Developmental origins of health and disease: ethical and social considerations
- 37 Past obstacles and future promise
- Index
- References
Summary
Introduction
Chronic renal disease is a major health problem in many societies. In some populations, including the Australian Aborigine, the Pima Indians of the USA, and certain populations of African-Americans, diseased kidneys due to chronic hypertension progress into end-stage renal disease, with a particularly high incidence (Hoy et al. 1999, Kett and Bertram 2004). The American Kidney Foundation estimates that as many as 20 million Americans, or approximately 10% of adults in the population, have some form of renal disease. Not only is it the ninth leading cause of death in Americans, but treatment for patients with chronic renal failure is amongst the most expensive for any chronic disease. The causes of kidney disease are numerous, including inherited and congenital renal defects, but by far the greatest risk factors are diabetes and hypertension. Similar to other adult-onset diseases, such as hypertension and diabetes mellitus, lifestyle factors such as a high-fat/high-salt diet, smoking and lack of exercise can contribute significantly to the development of renal disease. Epidemiological and experimental evidence is accumulating to suggest that, as with hypertension and diabetes, the susceptibility of an individual to develop renal disease may be increased if that person has been exposed to a poor or suboptimal intrauterine environment. If a substantive link can be proven between abnormal kidney development and the later development of hypertension and renal disease, then measures can be recommended which could decrease significantly the incidence of adult hypertension.
- Type
- Chapter
- Information
- Developmental Origins of Health and Disease , pp. 310 - 322Publisher: Cambridge University PressPrint publication year: 2006
References
- 1
- Cited by