
Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Extrasolar planets: Past, present, and future
- The quest for very low-mass planets
- Extrasolar planets: A galactic perspective
- The Kepler Mission: Design, expected science results, opportunities to participate
- Observations of the atmospheres of extrasolar planets
- Planetary migration
- Observational constraints on dust disk lifetimes: Implications for planet formation
- The evolution of gas in disks
- Planet formation
- Core accretion—gas capture model for gas giant planet formation
- Gravitational instabilities in protoplanetary disks
- Conference summary: The quest for new worlds
The quest for very low-mass planets
Published online by Cambridge University Press: 22 October 2009
- Frontmatter
- Contents
- Participants
- Preface
- Extrasolar planets: Past, present, and future
- The quest for very low-mass planets
- Extrasolar planets: A galactic perspective
- The Kepler Mission: Design, expected science results, opportunities to participate
- Observations of the atmospheres of extrasolar planets
- Planetary migration
- Observational constraints on dust disk lifetimes: Implications for planet formation
- The evolution of gas in disks
- Planet formation
- Core accretion—gas capture model for gas giant planet formation
- Gravitational instabilities in protoplanetary disks
- Conference summary: The quest for new worlds
Summary
The Doppler technique has continuously improved its precision during the past two decades, attaining the level of 1 ms−1. The increasing precision opened the way to the discovery of the first extrasolar planet, and later, to the exploration of a large range of orbital parameters of extrasolar planets. This ability to detect and characterize in great detail companions down to Neptune-mass planets has provided many new and unique inputs for the understanding of planet formation and evolution. In addition, the success of the Doppler technique introduced a great dynamic in the whole domain, allowing the exploration of new possibilities.
Nowadays, the Doppler technique is no longer the only means to discover extrasolar planets. The performance of new instruments, like the High Accuracy Radial-velocity Planet Searcher (HARPS), has shown that the potential of the Doppler technique has not been exhausted; Earth-mass planets are now within reach. In the future, radial velocities will also play a fundamental role in the follow-up and characterization of planets discovered by means of other techniques—for transit candidates, in particular. We think, therefore, that the follow-up of candidates provided by, e.g., the COnvection, ROtation and planetary Transits (COROT) and Kepler space telescopes, will be of primary importance.
- Type
- Chapter
- Information
- A Decade of Extrasolar Planets around Normal StarsProceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland May 2–5, 2005, pp. 15 - 25Publisher: Cambridge University PressPrint publication year: 2008