Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:27:05.490Z Has data issue: false hasContentIssue false

5 - Regression with a single predictor

Published online by Cambridge University Press:  05 October 2013

John Maindonald
Affiliation:
Australian National University, Canberra
W. John Braun
Affiliation:
University of Western Ontario
Get access

Summary

Data for which the models of this chapter may be appropriate can be displayed as a scatterplot. The focus will be on the straight line model, though the use of transformations makes it possible to accommodate specific forms of non-linear relationship within this framework. By convention, the x-variable, plotted on the horizontal axis, has the role of explanatory variable. The y-variable, plotted on the vertical axis, has the role of response or outcome variable.

Many of the issues that arise for these simple regression models are fundamental to any study of regression methods. Various special applications of linear regression raise their own specific issues. One such special application, discussed in Subsection 5.6.2, is to size and shape data.

Scrutiny of the scatterplot should precede regression calculations. Such a plot may indicate that the intended regression is plausible, or it may reveal unexpected features.

If there are many observations, it is often useful to compare the fitted line with a fitted smooth curve. If this differs substantially from an intended line, then straight line regression may be inappropriate, as in Figure 2.6. The fitting of such smooth curves will be a major focus of Chapter 7.

Fitting a line to data

How accurate is the line?

Application of the summary function to an lm object from a straight line regression, as in Subsection 5.1.1 following, gives a standard error for each of a and b. Standard errors of predicted values may also or alternatively be of interest; we defer discussion of these until Section 5.3. Determination of these standard errors requires the specific statistical assumptions that will now be noted.

Type
Chapter
Information
Data Analysis and Graphics Using R
An Example-Based Approach
, pp. 142 - 169
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×