Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T13:23:37.876Z Has data issue: false hasContentIssue false

6 - Connecting Micro- and Macro-Evolutionary Research

Extant Cryptic Species as Systems to Understand Macro-Evolutionary Stasis

Published online by Cambridge University Press:  01 September 2022

Alexandre K. Monro
Affiliation:
Royal Botanic Gardens, Kew
Simon J. Mayo
Affiliation:
Royal Botanic Gardens, Kew
Get access

Summary

‘Cryptic species’ are commonplace in systematics. With the application of barcoding approaches, increasing numbers of species are shown to be supposedly cryptic. However, the use of the term is inconsistent in the literature. Moreover, processes associated with the formation of cryptic species are generally ignored: (I) recent divergence, (II) parallel or (III) convergent phenotypic evolution, or (IV) phenotypic stasis. This causes confusion and imprecision in discussing the origins, evolutionary trajectories and ecological importance of cryptic species. We summarise these four processes based on a conceptual framework for the definition of cryptic species. The four processes identified above differ from each other in their temporal scale, phylogenetic context, and underlying selection.In focusing on the phenomenon of stasis, the absence of change over long geological periods, we identify overlaps between stasis in the paleontological record and as observed in cryptic species, and we discuss the challenge of integrating stasis into current evolutionary thinking. These include microevolutionary research that indicates abundant variation in genetic markers, quantitative traits and development. Hence, there are contradictions between micro- and macroevolutionary scales. Cryptic species bridge the gap between micro- and macroevolutionary research and so valuable research organisms.

Type
Chapter
Information
Cryptic Species
Morphological Stasis, Circumscription, and Hidden Diversity
, pp. 143 - 168
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizon, S., Kucera, M., and Jansen, V. A. A. (2008) Competition between cryptic species explains variations in rates of lineage evolution. Proceedings of the National Academy of Sciences 105: 1238212386. doi: 10.1073/pnas.0805039105CrossRefGoogle ScholarPubMed
Appeltans, W., Angel, Martin V., Artois, T. et al. (2012) The magnitude of global marine species diversity. Current Biology 22: 21892202. doi: 10.1016/j.cub.2012.09.036Google Scholar
Armenteros, M., Ruiz-Abierno, A., and Decraemer, W. (2014) Taxonomy of Stilbonematinae (Nematoda: Desmodoridae): Description of two new and three known species and phylogenetic relationships within the family. Zoological Journal of the Linnean Society 171: 121. doi: 10.1111/zoj.12126CrossRefGoogle Scholar
Bauret, L., Rouhan, G., Hirai, R. Y. et al. (2017) Molecular data, based on an exhaustive species sampling of the fern genus Rumohra (Dryopteridaceae), reveal a biogeographical history mostly shaped by dispersal and several cryptic species in the widely distributed Rumohra adiantiformis. Botanical Journal of the Linnean Society 185: 463481. doi: 10.1093/botlinnean/box072CrossRefGoogle Scholar
Bensch, S., Pérez-Tris, J., Waldenström, J., and Hellgren, O. (2004) Linkage between nuclear and mitochondrial DNA sequences in avian Malaria parasites: Multiple cases of cryptic speciation? Evolution 58: 16171621. doi: 10.1111/j.0014-3820.2004.tb01742.xGoogle ScholarPubMed
Bernardo, J. (2011) A critical appraisal of the meaning and diagnosability of cryptic evolutionary diversity, and its implications for conservation in the face of climate change. In: Hodkinson, T. R., Jones, M. B., Waldren, S., and Parnell, J. A. N. (eds.) Climate Change, Ecology and Systematics. Cambridge University Press, Cambridge, pp. 380438.CrossRefGoogle Scholar
Bickford, D., Lohman, D. J., Sodhi, N. S. et al. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148155. doi: 10.1016/j.tree.2006.11.004Google Scholar
Bilandžija, H., Morton, B., Podnar, M., and Ćetković, H. (2013) Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): Unearthing the subterranean biodiversity of the Dinaric Karst. Frontiers in Zoology 10: 5. doi: 10.1186/1742-9994-10-5CrossRefGoogle ScholarPubMed
Brandt, A., Brix, S., Held, C., and Kihara, T. C. (2014) Molecular differentiation in sympatry despite morphological stasis: Deep-sea Atlantoserolis Wägele, 1994 and Glabroserolis Menzies, 1962 from the south-west Atlantic (Crustacea: Isopoda: Serolidae). Zoological Journal of the Linnean Society 172: 318359. doi: 10.1111/zoj12178CrossRefGoogle Scholar
Cerca, J., Meyer, C., Purschke, G., and Struck, T. H. (2020a) Delimitation of cryptic species drastically reduces the geographical ranges of marine interstitial ghost-worms (Stygocapitella; Annelida, Sedentaria). Molecular Phylogenetics and Evolution 143: 106663. doi: 10.1016/j.ympev.2019.106663Google Scholar
Cerca, J., Meyer, C., Purschke, G., and Struck, T. H. (2020b) Deceleration of morphological evolution in a cryptic species complex and its link to paleontological stasis. Evolution 74: 116131. doi: 10.1111/evo.13884Google Scholar
Chomicki, G. and Renner, S. S. (2017) Partner abundance controls mutualism stability and the pace of morphological change over geologic time. Proceedings of the National Academy of Sciences 114: 39513956. doi: 10.1073/pnas.1616837114CrossRefGoogle ScholarPubMed
Cooke, G. M., Chao, N. L., and Beheregaray, L. B. (2012) Five cryptic species in the Amazonian catfish Centromochlus existimatus identified based on biogeographic predictions and genetic data. PLoS ONE 7: e48800. doi: 10.1371/journal.pone.0048800CrossRefGoogle ScholarPubMed
Damm, S., Schierwater, B., and Hadrys, H. (2010) An integrative approach to species discovery in odonates: From character-based DNA barcoding to ecology. Molecular Ecology 19: 38813893. doi: 10.1111/j.1365-294X.2010.04720.xGoogle Scholar
Darda, D. M. (1994) Allozyme variation and morphological evolution among Mexican salamanders of the genus Chiropterotriton (Caudata: Plethodontidae). Herpetologica 50: 164187.Google Scholar
Davis, C. C., Schaefer, H., Xi, Z. et al. (2014) Long-term morphological stasis maintained by a plant–pollinator mutualism. Proceedings of the National Academy of Sciences 111: 59145919. doi: 10.1073/pnas.1403157111Google Scholar
Derycke, S., De Meester, N., Rigaux, A. et al. (2016) Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Molecular Ecology 25: 20932110 doi: 10.1111/mec.13597CrossRefGoogle ScholarPubMed
Dodson, S. I., Grishanin, A. K., Gross, K., and Wyngaard, G. A. (2003) Morphological analysis of some cryptic species in the Acanthocyclops vernalis species complex from North America. Hydrobiologia 500: 131143. doi: 10.1023/A:1024678018090Google Scholar
Dominguez, J., Aira, M., Breinholt, J. W. et al. (2015) Underground evolution: New roots for the old tree of lumbricid earthworms. Molecular Phylogenetics and Evolution 83: 719. doi: 10.1016/j.ympev.2014.10.024CrossRefGoogle ScholarPubMed
Dool, S. E., Puechmaille, S. J., Foley, N. M. et al. (2016) Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution 97: 196212. doi: 10.1016/j.ympev.2016.01.003Google Scholar
Dornburg, A., Federman, S., Eytan, R. I. , and Near, T. J. (2016) Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen. Molecular Phylogenetics and Evolution 104: 3243. doi: 10.1016/j.ympev.2016.07.013Google Scholar
Eldredge, N. (1999) The Pattern of Evolution. Freeman, New York, 250 pp.Google Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M. et al. (2005) The dynamics of evolutionary stasis. Paleobiology 31: 133145. doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2Google Scholar
Elgetany, A. H., El-Ghobashy, A. E., Ghoneim, A. M., and Struck, T. H. (2018) Description of a new species of the genus Marphysa (Eunicidae), Marphysa aegypti sp.n., based on molecular and morphological evidence. Invertebrate Zoology 15: 7184. doi: 10.15298/invertzool.15.1.05CrossRefGoogle Scholar
Estes, S. and Arnold, S. J. (2007) Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. The American Naturalist 169: 227244. doi: 10.1086/510633Google Scholar
Fišer, C., Robinson, C. T. , and Malard, F. (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27: 613635. doi: 10.1111/mec.14486Google Scholar
Fontaneto, D. (2014) Molecular phylogenies as a tool to understand diversity in rotifers. International Review of Hydrobiology 99: 178187. doi: 10.1002/iroh.201301719CrossRefGoogle Scholar
Fontaneto, D., Giordani, I., Melone, G., and Serra, M. (2007) Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583: 297307. doi: 10.1007/s10750-007-0573-1CrossRefGoogle Scholar
Foote, M. (1997) The evolution of morphological diversity. Annual Review of Ecology and Systematics 28: 129152. doi: 10.1146/annurev.ecolsys.28.1.129Google Scholar
Futuyma, D. J. (1987) On the role of species in anagenesis. The American Naturalist 130: 465473. doi: 10.1086/284724CrossRefGoogle Scholar
Futuyma, D. J. (2010) Evolutionary constraint and ecological consequences. Evolution 64: 18651884. doi: 10.1111/j.1558-5646.2010.00960.xGoogle Scholar
Gabaldón, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J., and Serra, M. (2017) Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796: 718. doi: 10.1007/s10750-016-2723-9Google Scholar
Gabaldón, C., Serra, M., Carmona, M. J., and Montero-Pau, J. (2015) Life-history traits, abiotic environment and coexistence: The case of two cryptic rotifer species. Journal of Experimental Marine Biology and Ecology 465: 142152. doi: 10.1016/j.jembe.2015.01.016CrossRefGoogle Scholar
Giere, O. (2009) Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments. Springer-Verlag, Berlin, Heidelberg, 527 pp.Google Scholar
Gingerich, P. D. (2019) Rates of Evolution: A Quantative Synthesis. Cambridge University Press, New York, 381 pp.Google Scholar
Gómez, A., Serra, M., Carvalho, G. R., and Lunt, D. H. (2002) Speciation in ancient cryptic species complexes: Evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 14311444. doi: 10.1111/j.0014-3820.2002.tb01455.xGoogle ScholarPubMed
Gould, S. J. and Eldredge, N. (1977) Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3: 115151. doi: 10.1017/S0094837300005224Google Scholar
Grishin, N. V. (2014) Two new species of Clito from South America and a revision of the Clito littera group (Lepidoptera: Hesperiidae: Pyrginae). Zootaxa 3861: 231248. doi: 10.11646/zootaxa.3861.3.2CrossRefGoogle Scholar
Haller, B. C. and Hendry, A. P. (2014) Solving the paradox of stasis: Squashed stabilizing selection and the limits of detection. Evolution 68: 483500. doi: 10.1111/evo.12275Google Scholar
Hansen, T. F. (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51: 13411351. doi: 10.1111/j.1558-5646.1997.tb01457.xCrossRefGoogle ScholarPubMed
Hansen, T. F. and Houle, D. (2004) Evolvability, stabilizing selection, and the problem of stasis. In: Pigliucci, M. and Preston, K. (eds.) Phenotypic Integration: Studying the Ecology and Evolution of complex Phenotypes. Oxford University Press, Oxford, pp. 130154.CrossRefGoogle Scholar
Hawksworth, D. L. and Lücking, R. (2017) Fungal Diversity Revisi ted: 2.2 to 3.8 Million Species. Microbiology Spectrum 5. doi: 10.1128/microbiolspec.FUNK-0052-2016Google Scholar
Heethoff, M. (2018) Cryptic species: Conceptual or terminological chaos? A response to Struck et al. Trends in Ecology & Evolution 33: 310. doi: 10.1016/j.tree.2018.02.006Google Scholar
Holt, R. D. (1996) Demographic constraints in evolution: Towards unifying the evolutionary theories of senesence and niche conversatism. Evolutionary Ecology 10: 111. doi: 10.1007/BF01239342Google Scholar
Holt, R. D. and Gaines, M. S. (1992) Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology 6: 433447. doi: 10.1007/BF02270702CrossRefGoogle Scholar
Houle, D. (1998) How should we explain variation in the genetic variance of traits? Genetica 102/103: 241253. doi: 10.1023/A:1017034925212Google Scholar
Hunt, G. and Rabosky, D. L. (2014) Phenotypic evolution in fossil species: Pattern and process. Annual Review of Earth and Planetary Sciences 42: 421441. doi: 10.1146/annurev-earth-040809-152524Google Scholar
Hutchings, P. and Kupriyanova, E. (2018) Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives. Invertebrate Systematics 32: 19. doi: 10.1071/IS17035Google Scholar
Johannesen, J., Lubin, Y., Smith, D. R., Bilde, T., and Schneider, J. M. (2007) The age and evolution of sociality in Stegodyphus spiders: A molecular phylogenetic perspective. Proceedings of the Royal Society B: Biological Sciences 274: 231237. doi: 10.1098/rspb.2006.3699Google Scholar
Kawecki, T. J. (1995) Deomgraphy of source-sink populations and the evolution of ecological niches. Evolutionary Ecology 9: 3844. doi: 10.1007/BF01237695Google Scholar
Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217: 624626. doi: 10.1038/217624a0Google Scholar
King, J. L. and Hanner, R. (1998) Cryptic species in a ‘living fossil’ lineage: Taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Molecular Phylogenetics and Evolution 10: 2336. doi: 10.1006/mpev.1997.0470Google Scholar
Knappertsbusch, M. (2000) Morphologic evolution of the coccolithophorid Calcidiscus leptoporus from the Early Miocene to Recent. Journal of Paleontology 74: 712730. doi: 10.1017/S0022336000032820Google Scholar
Knowlton, N. (1993) Sibling species in the sea. Annual Review of Ecology and Systematics 24: 189216. doi: 10.1146/annurev.es.24.110193.001201Google Scholar
Korshunova, T., Martynov, A., Bakken, T., and Picton, B. (2017) External diversity is restrained by internal conservatism: New nudibranch mollusc contributes to the cryptic species problem. Zoologica Scripta 46: 683692. doi: 10.1111/zsc.12253Google Scholar
Koufopanou, V., Burt, A., Szaro, T., and Taylor, J. W. (2001) Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Molecular Biology and Evolution 18: 12461258. doi: 10.1093/oxfordjournals.molbev.a003910Google Scholar
Lavoué, S., Miya, M., Arnegard, M. E. et al. (2011) Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence. Proceedings of the Royal Society B: Biological Sciences 278: 10031008. doi: 10.1098/rspb.2010.1639Google Scholar
Leavitt, D. H., Bezy, R. L., Crandall, K. A., and Sites, J. W., Jr. (2007) Multi-locus DNA sequence data reveal a history of deep cryptic vicariance and habitat-driven convergence in the desert night lizard Xantusia vigilis species complex (Squamata: Xantusiidae). Molecular Ecology 16: 44554481. doi: 10.1111/j.1365-294X.2007.03496.xCrossRefGoogle ScholarPubMed
Lee, C. E. and Frost, B. W. (2002) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480: 111128. doi: 10.1023/A:1021293203512Google Scholar
Lemer, S., Buge, B., Bemis, A. et al. (2014) First molecular phylogeny of the circumtropical bivalve family Pinnidae (Mollusca, Bivalvia): Evidence for high levels of cryptic species diversity. Molecular Phylogenetics and Evolution 75: 1123. doi: 10.1016/j.ympev.2014.02.008Google Scholar
Leria, L., Vila-Farré, M., Álvarez-Presas, M. et al. (2020) Cryptic species delineation in freshwater planarians of the genus Dugesia (Platyhelminthes, Tricladida): Extreme intraindividual genetic diversity, morphological stasis, and karyological variability. Molecular Phylogenetics and Evolution 143: 106496. doi: 10.1016/j.ympev.2019.05.010CrossRefGoogle ScholarPubMed
Liang, Q., Hu, X., Wu, G., and Liu, J. (2015) Cryptic and repeated ‘allopolyploid’ speciation within Allium przewalskianum Regel. (Alliaceae) from the Qinghai-Tibet Plateau. Organisms Diversity & Evolution 15: 265276. doi: 10.1007/s13127-014-0196-0CrossRefGoogle Scholar
Lidgard, S. and Love, A. C. (2018) Rethinking living fossils. Bioscience 68: 760770. doi: 10.1093/biosci/biy084Google Scholar
Lieberman, B. S. and Dudgeon, S. (1996) An evaluation of stabilizing selection as a mechanism for stasis. Palaeogeography, Palaeoclimatology, Palaeoecology 127: 229238. doi: 10.1016/S0031-0182(96)00097-1Google Scholar
Lynch, M. (1990) The rate of morphological evolution in mammals from the standpoint of the neutral expectation. American Naturalist 136: 727741. doi: 10.1086/285128Google Scholar
Machordom, A. and Macpherson, E. (2004) Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: Molecular and morphological evidence. Molecular Phylogenetics and Evolution 33: 259279. doi: 10.1016/j.ympev.2004.06.001Google Scholar
Malekzadeh-Viayeh, R., Pak-Tarmani, R., Rostamkhani, N., and Fontaneto, D. (2014) Diversity of the rotifer Brachionus plicatilis species complex (Rotifera: Monogononta) in Iran through integrative taxonomy. Zoological Journal of the Linnean Society 170: 233244. doi: 10.1111/zoj.12106CrossRefGoogle Scholar
Mant, J., Peakall, R., and Weston, P. H. (2005) Specific pollinator attraction and the diversification of sexually deceptive Chiloglottis (Orchidaceae). Plant Systematics and Evolution 253: 185200. doi: 10.1007/s00606-005-0308-6Google Scholar
Mas-Peinado, P., Buckley, D., Ruiz, J. L., and Garcia-Paris, M. (2018) Recurrent diversification patterns and taxonomic complexity in morphologically conservative ancient lineages of Pimelia (Coleoptera: Tenebrionidae). Systematic Entomology 43: 522548. doi: 10.1111/syen.12291Google Scholar
Mathers, T. C., Hammond, R. L., Jenner, R. A., Hänfling, B., and Gómez, A. (2013) Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’. PeerJ 1: e62. doi: 10.7717/peerj.62Google Scholar
Maynard Smith, J. (1983) The genetics of stasis and punctuation. Annual Review of Genetics 17: 1125. doi: 10.1146/annurev.ge.17.120183.000303Google Scholar
Mayr, E. (1963) Animal Species and Evolution. Belknap Press of Harvard University, Cambridge, MA, 797 pp.CrossRefGoogle Scholar
McDaniel, S. F. and Shaw, A. J. (2003) Phylogeographic structure and cryptic speciation in the trans-Antarctic moss Pyrrhobryum mnioides. Evolution 57: 205215. doi: 10.1111/j.0014-3820.2003.tb00256.xGoogle Scholar
Michaloudi, E., Mills, S., Papakostas, S. et al.(2017) Morphological and taxonomic demarcation of Brachionus asplanchnoidis Charin within the Brachionus plicatilis cryptic species complex (Rotifera, Monogononta). Hydrobiologia 796: 1937. doi: 10.1007/s10750-016-2924-2Google Scholar
Mills, S., Alcántara-Rodríguez, J. A., Ciros-Pérez, J. et al. (2017) Fifteen species in one: Deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796: 3958. doi: 10.1007/s10750-016-2725-7Google Scholar
Montero-Pau, J., Ramos-Rodríguez, E., Serra, M., and Gómez, A. (2011) Long-term coexistence of rotifer cryptic species. PLoS ONE 6: e21530. doi: 10.1371/journal.pone.0021530Google Scholar
Moussalli, A. and Herbert, D. G. (2016) Deep molecular divergence and exceptional morphological stasis in dwarf cannibal snails Nata sensu lato Watson, 1934 (Rhytididae) of southern Africa. Molecular Phylogenetics and Evolution 95: 100115. doi: 10.1016/j.ympev.2015.11.003Google Scholar
Muggia, L., Kocourková, J., and Knudsen, K. (2015) Disentangling the complex of Lichenothelia species from rock communities in the desert. Mycologia, 107: 1233-1253. doi: 10.3852/15-021Google Scholar
Noodt, W. (1974) Anpassungen an interstitielle Bedingungen: Ein Faktor in der Evolution höherer Taxa der Crustacea. Faunistische-ökologische Mitteilungen 4: 445452.Google Scholar
Novo, M., Almodóvar, A., Fernández, R., Trigo, D., and Díaz Cosín, D. J. (2010) Cryptic speciation of hormogastrid earthworms revealed by mitochondrial and nuclear data. Molecular Phylogenetics and Evolution 56: 507512. doi: 10.1016/j.ympev.2010.04.010Google Scholar
Novo, M., Almodóvar, A. N. A., Fernández, R. et al. (2012) Appearances can be deceptive: Different diversification patterns within a group of Mediterranean earthworms (Oligochaeta, Hormogastridae). Molecular Ecology 21: 37763793. doi: 10.1111/j.1365-294X.2012.05648.xCrossRefGoogle ScholarPubMed
Novo, M., Riesgo, A., Fernández-Guerra, A., and Giribet, G. (2013) Pheromone evolution, reproductive genes, and comparative transcriptomics in Mediterranean earthworms (annelida, oligochaeta, hormogastridae). Molecular Biology and Evolution 30: 16141629. doi: 10.1093/molbev/mst074Google Scholar
Nygren, A. (2013) Cryptic polychaete diversity: A review. Zoologica Scripta 43: 172183. doi: 10.1111/zsc.12044Google Scholar
Pachut, J. F. and Anstey, R. L. (2009) Inferring evolutionary modes in a fossil lineage (Bryozoa: Peronopora) from the Middle and Late Ordovician. Paleobiology 35: 209230. doi: 10.1666/07055.1Google Scholar
Pante, E., Puillandre, N., Viricel, A. et al. (2015) Species are hypotheses: Avoid connectivity assessments based on pillars of sand. Molecular Ecology 24: 525544. doi: 10.1111/mec.13048Google Scholar
Papakostas, S., Michaloudi, E., Proios, K. et al. (2016) Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: Evidence from a rotifer cryptic species complex. Systematic Biology 65: 508524. doi: 10.1093/sysbio/syw016Google Scholar
Parra-Olea, G. (2003) Phylogenetic relationships of the genus Chiropterotriton (Caudata: Plethodontidae) based on 16S ribosomal mtDNA. Canadian Journal of Zoology 81: 20482060. doi: 10.1139/z03-155Google Scholar
Penton, E. H., Hebert, P. D. N. and Crease, T. J. (2004) Mitochondrial DNA variation in North American populations of Daphnia obtusa: Continentalism or cryptic endemism? Molecular Ecology 13: 97107. doi: 10.1046/j.1365-294X.2003.02024.xGoogle Scholar
Perez-Ponce de Leon, G. and Poulin, R. (2016) Taxonomic distribution of cryptic diversity among metazoans: Not so homogeneous after all. Biology Letters 12: 20160371. doi: 10.1098/rsbl.2016.0371Google Scholar
Pfenninger, M. and Schwenk, K. (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7: 121. doi: 10.1186/1471-2148-7-121Google Scholar
Poulin, R. and Pérez-Ponce de León, G. (2017) Global analysis reveals that cryptic diversity is linked with habitat but not mode of life. Journal of Evolutionary Biology 30: 641649. doi: 10.1111/jeb.13034Google Scholar
Rabosky, D. L. and Adams, D. C. (2012) Rates of moprhological evolution are correlated with species richness in salamanders. Evolution 66: 18071818. doi: 10.1111/j.1558-5646.2011.01557.xGoogle Scholar
Ramey-Balcı, P., Fiege, D., and Struck, T. H. (2018) Molecular phylogeny, morphology, and distribution of Polygordius (Polychaeta: Polygordiidae) in the Atlantic and Mediterranean. Molecular Phylogenetics and Evolution 127: 919930. doi: 10.1016/j.ympev.2018.06.039Google Scholar
Razo-Mendivil, U., Rosas-Valdez, R., Rubio-Godoy, M., and Pérez-Ponce de León, G. (2015) The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in Middle America. Parasitology International 64: 173181. doi: 10.1016/j.parint.2014.12.002Google Scholar
Reidenbach, K. R., Neafsey, D. E., Costantini, C. et al. (2012) Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biology and Evolution 4: 12021212. doi: 10.1093/gbe/evs095Google Scholar
Richards, V. P., Stanhope, M. J., and Shivji, M. S. (2012) Island endemism, morphological stasis, and possible cryptic speciation in two coral reef, commensal Leucothoid amphipod species throughout Florida and the Caribbean. Biodiversity and Conservation 21: 343361. doi: 10.1007/s10531-011-0186-xGoogle Scholar
Rocha-Olivares, A., Fleeger, J. W., and Foltz, D. W. (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Molecular Biology and Evolution 18: 10881102. doi: 10.1093/oxfordjournals.molbev.a003880CrossRefGoogle ScholarPubMed
Rogers, A. D., Thorpe, J. P., and Gibson, R. (1995) Genetic evidence for the occurrence of a cryptic species with the littoral nemerteans Lineus ruber and L. viridis (Nemertea: Anopla). Marine Biology 122: 305316. doi: 10.1007/BF00348944Google Scholar
Rosso, A., Sanfilippo, R., Di Geronimo, I., and Bonfiglio, L. (2016) Pleistocene occurrence of recently discovered cryptic vermetid species from the Mediterranean. Bollettino della Società Paleontologica Italiana 55: 105109.Google Scholar
Sánchez Herrera, M., Realpe, E., and Salazar, C. (2010) A neotropical polymorphic damselfly shows poor congruence between genetic and traditional morphological characters in Odonata. Molecular Phylogenetics and Evolution 57: 912917. doi: 10.1016/j.ympev.2010.08.016Google Scholar
Santamaria, C. A., Mateos, M., DeWitt, T. J., and Hurtado, L. A. (2016) Constrained body shape among highly genetically divergent allopatric lineages of the supralittoral isopod Ligia occidentalis (Oniscidea). Ecology and Evolution 6: 15371554. doi: 10.1002/ece3.1984Google Scholar
Sasakawa, K. (2016) Two new species of the ground beetle subgenus Sadonebria Ledoux & Roux, 2005 (Coleoptera, Carabidae, Nebria) from Japan and first description of larvae of the subgenus. ZooKeys 578: 97113. doi: 10.3897/zookeys.578.7424CrossRefGoogle Scholar
Seehausen, O. (2006) African cichlid fish: A model system in adaptive radiation research. Proceedings of the Royal Society B: Biological Sciences 273: 19871998. doi: 10.1098/rspb.2006.3539Google Scholar
Seidel, R. A., Lang, B. K., and Berg, D. J. (2009) Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biological Conservation 142: 23032313. doi: 10.1016/j.biocon.2009.05.003Google Scholar
Sheldon, P. R. (1996) Plus ça change: A model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127: 209227. doi: 10.1016/S0031-0182(96)00096-XCrossRefGoogle Scholar
Si, W., Berggren, W. A., and Aubry, M.-P. (2018) Mosaic evolution in the middle Miocene planktonic foraminifera Fohsella lineage. Paleobiology 44: 263272. doi: 10.1017/pab.2017.23Google Scholar
Smith, K. L., Harmon, L. J., Shoo, L. P., and Melville, J. (2011) Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evolution 65: 976992. doi: 10.1111/j.1558-5646.2010.01211.xGoogle Scholar
Stoks, R., Nystrom, J. L., May, M. L. McPeek, M. A., and Benkman, C. (2005) Parallel evolution in ecological and reproductive traits to produce cryptic damselfly species across the Holarctic. Evolution 59: 19761988. doi: 10.1554/05-192.1Google Scholar
Struck, T. H., Koczula, J., Stateczny, D. et al. (2017) Two new species in the annelid genus Stygocapitella (Orbiniida, Parergodrilidae) with comments on their biogeography. Zootaxa 4286: 301332. doi: 10.11646/zootaxa.4286.3.1CrossRefGoogle Scholar
Struck, T. H., Feder, J. L., Bendiksby, M. et al. (2018a) Cryptic species: More than terminological chaos: A reply to Heethoff. Trends in Ecology & Evolution 33: 310312. doi: 10.1016/j.tree.2018.02.008Google Scholar
Struck, T. H., Feder, J. L., Bendiksby, M. (2018b) Finding Evolutionary Processes Hidden in Cryptic Species. Trends in Ecology & Evolution. doi: 10.1016/j.tree.2017.11.007CrossRefGoogle Scholar
Sukumaran, J. and Knowles, L. L. (2017) Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences 114: 16071612. doi: 10.1073/pnas.1607921114Google Scholar
Swift, H. F., Gómez Daglio, L., and Dawson, M. N. (2016) Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Molecular Phylogenetics and Evolution 99: 103115. doi: 10.1016/j.ympev.2016.02.013Google Scholar
Thum, R. A. and Derry, A. M. (2008) Taxonomic implications for diaptomid copepods based on contrasting patterns of mitochondrial DNA sequence divergences in four morphospecies. Hydrobiologia 614: 197. doi: 10.1007/s10750-008-9506-xGoogle Scholar
Thum, R. A. and Harrison, R. G. (2008) Deep genetic divergences among morphologically similar and parapatric Skistodiaptomus (Copepoda: Calanoida: Diaptomidae) challenge the hypothesis of Pleistocene speciation. Biological Journal of the Linnean Society 96: 150165. doi: 10.1111/j.1095-8312.2008.01105.xGoogle Scholar
Trontelj, P., Blejec, A., and Fišer, C. (2012) Ecomorphological convergence of cave communities. Evolution 66: 38523865. doi: 10.1111/j.1558-5646.201201734.xGoogle Scholar
Trontelj, P., Douady, C. J., Fišer, C. et al. (2009) A molecular test for cryptic diversity in ground water: How large are the ranges of macro-stygobionts? Freshwater Biology 54: 727744. doi: 10.1111/j.1365-2427.2007.01877.xGoogle Scholar
Tsoumani, M., Apostolidis, A. P., and Leonardos, I.D. (2013) Biogeography of Rutilus species of the southern Balkan Peninsula as inferred by multivariate analysis of morphological data. Journal of Zoology 289: 204212. doi: 10.1111/j.1469-7998.2012.00979.xGoogle Scholar
Valtueña, F. J., López, J., Álvarez, J., Rodríguez-Riaño, T., and Ortega-Olivencia, A. (2016) Scrophularia arguta, a widespread annual plant in the Canary Islands: A single recent colonization event or a more complex phylogeographic pattern? Ecology and Evolution 6: 42584273. doi: 10.1002/ece3.2109Google Scholar
Van Bocxlaer, B. and Hunt, G. (2013) Morphological stasis in an ongoing gastropod radiation from Lake Malawi. Proceedings of the National Academy of Sciences 110: 1389213897. doi: 10.1073/pnas.1308588110Google Scholar
Vanschoenwinkel, B., Pinceel, T., Vanhove, M. P. M. et al. (2012) Toward a global phylogeny of the ‘living fossil’ crustacean order of the notostraca. PLoS ONE 7: e34998. doi: 10.1371/journal.pone.0034998Google Scholar
Villacorta, C., Jaume, D., Oromí, P., and Juan, C. (2008) Under the volcano: Phylogeography and evolution of the cave-dwelling Palmorchestia hypogaea (Amphipoda, Crustacea) at La Palma (Canary Islands). BMC Biology 6: 7. doi: 10.1186/1741-7007-6-7Google Scholar
Voje, K. L. (2016) Tempo does not correlate with mode in the fossil record. Evolution 70: 26782689. doi: 10.1111/evo.13090Google Scholar
Vrijenhoek, R. C. (2009) Cryptic species, phenotypic plasticity, and complex life histories: Assessing deep-sea faunal diversity with molecular markers. Deep Sea Research Part II: Topical Studies in Oceanography 56: 17131723. doi: 10.1016/j.dsr2.2009.05.016Google Scholar
Wada, S., Kameda, Y., and Chiba, S. (2013) Long-term stasis and short-term divergence in the phenotypes of microsnails on oceanic islands. Molecular Ecology 22: 48014810. doi: 10.1111/mec.12427Google Scholar
Weigand, A. M., Jochum, A., Slapnik, R. et al. (2013) Evolution of microgastropods (Ellobioidea, Carychiidae): Integrating taxonomic, phylogenetic and evolutionary hypotheses. BMC Evolutionary Biology 13: 18. doi: 10.1186/1471-2148-13-18Google Scholar
Wellborn, G. A. and Broughton, R. E. (2008) Diversification on an ecologically constrained adaptive landscape. Molecular Ecology 17: 29272936. doi: 10.1111/j.1365-294X.2008.03805.xGoogle Scholar
Wen, X., Xi, Y., Zhang, G., Xue, Y., and Xiang, X. (2016) Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: Roles of environmental variables. Journal of Plankton Research 38: 478489. doi: 10.1093/plankt/fbw006Google Scholar
Westheide, W. (1977) The geographical distribution of interstitial polychaetes. Mikrofauna Meeresboden 61: 287302.Google Scholar
Westheide, W. and Rieger, R. M. (1987) Systematics of the amphiatlantic Microphthalmus listensis species-group (Polychaeta: Hesionidae): Facts and concepts for reconstruction of phylogeny and speciation. Zeitschrift für zoologische Systematik and Evolutionsforschung 25: 1239. doi: 10.1111/j.1439-0469.1987.tb00911.xCrossRefGoogle Scholar
Williams, Gary C. (1992) Natural Selection: Domains, Levels, and Challenges. Oxford University Press, Oxford, 222 pp.Google Scholar
Winker, K. (2005) Sibling species were first recognized by William Derham (1718). Auk 122: 706707. doi: 10.1642/0004-8038(2005)122[0706:SSWFRB]2.0.CO;2Google Scholar
Witt, J. D., Blinn, D. W., and Hebert, P. D. (2003) The recent evolutionary origin of the phenotypically novel amphipod Hyalella montezuma offers an ecological explanation for morphological stasis in a closely allied species complex. Molecular Ecology 12: 405413. doi: 10.1046/j.1365-294x.2003.01728.xGoogle Scholar
Xavier, J. R., Rachello-Dolmen, P. G., Parra-Velandia, F. et al. (2010) Molecular evidence of cryptic speciation in the ‘cosmopolitan’ excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution 56: 1320. doi: 10.1016/j.ympev.2010.03.030Google Scholar
Yang, L., Hou, Z., and Li, S. (2013) Marine incursion into East Asia: A forgotten driving force of biodiversity marine incursion into East Asia. Proceedings of the Royal Society B: Biological Sciences 280: 18. doi: 10.1098/rspb.2012.2892Google Scholar
Zuccarello, G. C., West, J. A., and Kamiya, M. (2018) Non-monophyly of Bostrychia simpliciuscula (Ceramiales, Rhodophyta): Multiple species with very similar morphologies, a revised taxonomy of cryptic species. Phycological Research 66: 100107. doi: 10.1111/pre.12207Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×