from Part II - Scale invariance in non-equilibrium systems
Published online by Cambridge University Press: 05 June 2014
Continuous phase transitions from active to inactive, absorbing states represent prime examples of genuine non-equilibrium processes whose properties are strongly influenced by fluctuations. They arise in a broad variety of macroscopic phenomena, ranging from extinction thresholds in population dynamics and epidemic spreading models to certain diffusion-limited chemical reactions, and even turbulent kinetics in magnetic fluids. Intriguingly, the generic universality class for such active to absorbing phase transitions is intimately related to the scaling properties of critical directed percolation clusters. After elucidating this remarkable connection of stochastic kinetics with an originally geometric problem through mappings of both a specific microscopic interacting particle model and a more general mesoscopic Langevin description onto the corresponding Reggeon field theory action, we exploit the mathematical and conceptual techniques developed in previous chapters to compute the associated critical exponents to lowest non-trivial order in a dimensional ∊ expansion about the upper critical dimension dc = 4. We then set out to explore generalizations to systems with multiple particle species, and to investigate the dynamic percolation model variant that generates isotropic critical percolation clusters in the quasi-static limit. Particle spreading via long-range Lévy flights rather than nearest-neighbor hopping and coupling to an additional conserved field that may cause a fluctuation-induced first-order transition are also discussed. Motivated by the domain wall kinetics in non-equilibrium Ising systems, we address more general stochastic reaction systems of branching and annihilating random walks, and study the ensuing non-equilibrium phase diagrams and continuous transitions, including the parity-conserving universality class.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.