Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T20:50:40.160Z Has data issue: false hasContentIssue false

6 - Regression Estimators of Causal Effects

Published online by Cambridge University Press:  05 December 2014

Stephen L. Morgan
Affiliation:
The Johns Hopkins University
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Regression models are perhaps the most common form of data analysis used to evaluate alternative explanations for outcomes of interest to quantitatively oriented social scientists. In the past 50 years, a remarkable variety of regression models have been developed by statisticians. Accordingly, most major data analysis software packages allow for regression estimation of the relationships between interval and categorical variables, in cross sections and longitudinal panels, and in nested and multilevel patterns. In this chapter, however, we restrict our attention to ordinary least squares (OLS) regression, focusing mostly on the regression of an interval-scaled variable on a binary causal variable. As we will show, the issues are complicated enough for these models, and it is our knowledge of how least squares models work that allows us to explain this complexity. In addition, nearly all of the insight that can be gained from a deep examination of OLS models carries over to more complex regression models because the identification and heterogeneity issues that generate the complexity apply in analogous fashion to all regression-type models.

In this chapter, we present least squares regression from three different perspectives: (1) regression as a descriptive modeling tool, (2) regression as a parametric adjustment technique for estimating causal effects, and (3) regression as a matching estimator of causal effects. We give more attention to the third of these three perspectives on regression than is customary in methodological texts because this perspective allows one to understand the others from a counterfactual perspective.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 188 - 225
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×