Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T14:49:22.408Z Has data issue: false hasContentIssue false

4 - Models of Causal Exposure and Identification Criteria for Conditioning Estimators

Published online by Cambridge University Press:  05 December 2014

Stephen L. Morgan
Affiliation:
The Johns Hopkins University
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

In this chapter, we present the basic conditioning strategy for the estimation of causal effects. We first provide an account of the two basic implementations of conditioning – balancing the determinants of the cause of interest and adjusting for other causes of the outcome – using the language of “back-door paths.” After explaining the unique role that collider variables play in systems of causal relationships, we present what has become known as the back-door criterion for sufficient conditioning to identify a causal effect. To bring the back-door criterion into alignment with related guidance based on the potential outcome model, we then present models of causal exposure, introducing the treatment assignment and treatment selection literature from statistics and econometrics. We conclude with a discussion of the identification and estimation of conditional average causal effects by conditioning.

Conditioning and Directed Graphs

In Section 1.5, we introduced the three most common approaches for the estimation of causal effects, using language from the directed graph literature: (1) conditioning on variables that block all back-door paths from the causal variable to the outcome variable, (2) using exogenous variation in an appropriate instrumental variable to isolate covariation in the causal variable and the outcome variable, and (3) establishing the exhaustive and isolated mechanism that intercepts the effect of the causal variable on the outcome variable and then calculating the causal effect as it propagates through the mechanism.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 105 - 139
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×