Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T20:37:14.031Z Has data issue: false hasContentIssue false

13 - Counterfactuals and the Future of Empirical Research in Observational Social Science

Published online by Cambridge University Press:  05 December 2014

Stephen L. Morgan
Affiliation:
The Johns Hopkins University
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

What role should the counterfactual approach to observational data analysis play in causal analysis in the social sciences? Some scholars see its elaboration as a justification for experimental methodology as an alternative to observational data analysis. We agree that by laying bare the challenges that confront causal analysis with observational data, the counterfactual approach does indirectly support experimentation as an alternative to observation. But, because experiments are often (perhaps usually) infeasible for most of the causal questions that practicing social scientists appear to want to answer, this implication, when considered apart from others, is understandably distressing.

We see the observational data analysis methods associated with the potential outcome model, motivated using directed graphs, as useful tools that can help to improve the investigation of causal relationships within the social sciences, especially when experiments are infeasible. Accordingly, we believe that the methods associated with the counterfactual approach complement and extend older approaches to causal analysis with observational data by shaping the goals of an analysis, requiring explicit consideration of individual-level heterogeneity of causal effects, encouraging a wider consideration of available identification strategies, and clarifying standards for credible interpretations.

In this chapter, we first shore up our presentation of the counterfactual approach by considering several critical perspectives on its utility. We weigh in with the arguments that we find most compelling, and it will not be surprising to the reader that we find these objections less serious than do those who have formulated them.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 437 - 450
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×