Published online by Cambridge University Press: 23 February 2011
In recent years, there has been a growing interest in blind separation of non-negative sources, known as simply non-negative blind source separation (nBSS). Potential applications of nBSS include biomedical imaging, multi/hyper-spectral imaging, and analytical chemistry. In this chapter, we describe a rather new endeavor of nBSS, where convex geometry is utilized to analyze the nBSS problem. Called convex analysis of mixtures of non-negative sources (CAMNS), the framework described here makes use of a very special assumption called local dominance, which is a reasonable assumption for source signals exhibiting sparsity or high contrast. Under the locally dominant and some usual nBSS assumptions, we show that the source signals can be perfectly identified by finding the extreme points of an observation-constructed polyhedral set. Two methods for practically locating the extreme points are also derived. One is analysis-based with some appealing theoretical guarantees, while the other is heuristic in comparison, but is intuitively expected to provide better robustness against model mismatches. Both are based on linear programming and thus can be effectively implemented. Simulation results on several data sets are presented to demonstrate the efficacy of the CAMNS-based methods over several other reported nBSS methods.
Introduction
Blind source separation (BSS) is a signal-processing technique, the purpose of which is to separate source signals from observations, without information of how the source signals are mixed in the observations. BSS presents a technically very challenging topic to the signal processing community, but it has stimulated significant interest for many years due to its relevance to a wide variety of applications.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.