Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-23T01:58:19.093Z Has data issue: false hasContentIssue false

Part III - Quantifying Connectivity in Geomorphology

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abotalib, A. Z., Heggy, E., El Bastawesy, M., Ismail, E., Gad, A., & Attwa, M. (2021). Groundwater mounding: A diagnostic feature for mapping aquifer connectivity in hyper-arid deserts. Science of The Total Environment, 801, 149760.CrossRefGoogle ScholarPubMed
Andries, A., Morse, S., Murphy, R. J., Lynch, J., Mota, B., & Woolliams, E. R. (2021). Can current earth observation technologies provide useful information on soil organic carbon stocks for environmental land management policy? Sustainability, 13(21), 12074.CrossRefGoogle Scholar
Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., & Bochtis, D. (2019). Remote sensing techniques for soil organic carbon estimation: A review. Remote Sensing, 11(6), 676.CrossRefGoogle Scholar
Barrena-González, J., Rodrigo-Comino, J., Gyasi-Agyei, Y., Pulido, M., & Cerdá, A. (2020). Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates. Land, 9(3), 93.CrossRefGoogle Scholar
Bekele, B., & Gemi, Y. (2021). Soil erosion risk and sediment yield assessment with universal soil loss equation and GIS: In Dijo watershed, Rift valley Basin of Ethiopia. Modeling Earth Systems and Environment, 7(1), 273291.CrossRefGoogle Scholar
Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fenta, A. A., Ebabu, K., Sultan, D. & Dile, Y. T. (2022). Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. Journal of Hydrology: Regional Studies, 40, 100998.Google Scholar
Bezak, N., Mikoš, M., Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J et al. (2021). Soil erosion modelling: A bibliometric analysis. Environmental Research, 197, 111087.CrossRefGoogle ScholarPubMed
Blake, W. H., Wallbrink, P. J., Wilkinson, S. N., Humphreys, G. S., Doerr, S. H., Shakesby, R. A., & Tomkins, K. M. (2009). Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers. Geomorphology, 104(3–4), 105116.CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M. & Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 1734. https://doi.org/10.1016/j.earscirev.2013.02.001CrossRefGoogle Scholar
Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40, 177188. https://doi.org/10.1002/esp.3635CrossRefGoogle Scholar
Brunsden, D., & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers, 4, 463484.CrossRefGoogle Scholar
Burt, T., & Allison, R. J. (eds.). (2010). Sediment Cascades: An Integrated Approach. John Wiley & Sons.CrossRefGoogle Scholar
Cerdà, A. & Doerr, S. H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256263.CrossRefGoogle Scholar
Cerdà, A., Rodrigo-Comino, J., Yakupoğlu, T., Dindaroğlu, T., Terol, E., Mora-Navarro, G., Arabameri, A., Radziemska, M., Novara, A., Kavian, A., Vaverková, M. D., Abd-Elmabod, S. K., Hammad, H. M. & Daliakopoulos, I. N. (2020). Tillage versus no-Tillage. Soil properties and hydrology in an organic persimmon farm in Eastern Iberian Peninsula. Water 12, 1539. https://doi.org/10.3390/w12061539CrossRefGoogle Scholar
Cerdà, A., Franch-Pardo, I., Novara, A., Sannigrahi, S. & Rodrigo-Comino, J. (2021). Examining the effectiveness of catch crops as a nature-based solution to mitigate surface soil and water losses as an environmental regional concern. Earth Systems and Environment. https://doi.org/10.1007/s41748-021-00284-9.Google Scholar
Cerdà, A., Lucas-Borja, M. E., Franch-Pardo, I., Úbeda, X., Novara, A., López-Vicente, M., Popović, Z. & Pulido, M. (2021). The role of plant species on runoff and soil erosion in a Mediterranean shrubland. Science of The Total Environment, 799, 149218.CrossRefGoogle Scholar
Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64(4), 14791486.CrossRefGoogle Scholar
Chirinda, N., Roncossek, S. D., Heckrath, G., Elsgaard, L., Thomsen, I. K., & Olesen, J. E. (2014). Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat. Catena, 123, 99105.CrossRefGoogle Scholar
Chorley, R. J., & Kennedy, B. A. (1971). Physical Geography: A Systems Approach. London, UK: Prentice Hall.Google Scholar
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A., Marchi, L., & Cazorzi, F. (2018). Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to a debris-flow channel. Environmental Earth Sciences, 77(18), 121.CrossRefGoogle Scholar
Doyle, M. W., Shields, D., Boyd, K. F., Skidmore, P. B., & Dominick, D. (2007). Channel-forming discharge selection in river restoration design. Journal of Hydraulic Engineering, 133(7), 831837.CrossRefGoogle Scholar
Edokpa, D., Milledge, D., Allott, T., Holden, J., Shuttleworth, E., Kay, M., Johnston, A., et al.(2022). Rainfall intensity and catchment size control storm runoff in a gullied blanket peatland. Journal of Hydrology, 609, 127688.CrossRefGoogle Scholar
Evrard, O., Laceby, J. P., Lepage, H., Onda, Y., Cerdan, O., & Ayrault, S. (2015). Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review. Journal of Environmental Radioactivity, 148, 92110.CrossRefGoogle Scholar
Ferguson, R. (2008). Gravel-bed rivers at the reach scale. In Habersack, H., Piegay, H. & Rinaldi, M. (eds.), Gravel-Bed Rivers VI: From Process Understanding to River Restoration. Amsterdam: Elsevier. 3353.Google Scholar
Fernández-Raga, M., Palencia, C., Keesstra, S., Jordán, A., Fraile, R., Angulo-Martínez, M. & Cerdà, A. (2017). Splash erosion: A review with unanswered questions. Earth-Science Reviews, 171, 463477. https://doi.org/10.1016/j.earscirev.2017.06.009CrossRefGoogle Scholar
Forsmoo, J., Anderson, K., Macleod, C. J., Wilkinson, M. E., & Brazier, R. (2018). Drone‐based structure‐from‐motion photogrammetry captures grassland sward height variability. Journal of Applied Ecology, 55(6), 25872599.CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers and blankets: The (dis) connectivity of catchment-scale sediment cascades. Catena, 70(1), 4967.CrossRefGoogle Scholar
Fryirs, K. A. (2013). (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 3046.CrossRefGoogle Scholar
García-Ruiz, J. M., Beguería, S., Lana-Renault, N., Nadal-Romero, E. & Cerdà, A. (2017). Ongoing and emerging questions in water erosion studies. Land Degradation & Development, 28, 521. https://doi.org/10.1002/ldr.2641CrossRefGoogle Scholar
Heckmann, T. & Vericat, D. (2018). Computing spatially distributed sediment delivery ratios: Inferring functional sediment connectivity from repeat high-resolution digital elevation models. Earth Surface Processes and Landforms, 43, 15471554. https://doi.org/10.1002/esp.4334CrossRefGoogle Scholar
Heidbüchel, I., Troch, P. A., Lyon, S. W., & Weiler, M. (2012). The master transit time distribution of variable flow systems. Water Resources Research, 48(6).CrossRefGoogle Scholar
Hikel, H., Yair, A., Schwanghart, W., Hoffmann, U., Straehl, S. & Kuhn, N. J. (2013): Experimental investigation of soil ecohydrology on rocky desert slopes in the Negev Highlands, Israel. Zeitschrift für Geomormorphologie, Suplementary Issue, 57, 3958.CrossRefGoogle Scholar
Hooke, J. & Souza, J. (2021). Challenges of mapping, modelling and quantifying sediment connectivity. Earth-Science Reviews, 223. https://doi.org/10.1016/j.earscirev.2021.103847Google Scholar
Kalantari, Z., Ferreira, C. S. S., Koutsouris, A. J., Ahmer, A.-K., Cerdà, A. & Destouni, G. (2019). Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the Total Environment, 661, 393406. https://doi.org/10.1016/j.scitotenv.2019.01.009CrossRefGoogle ScholarPubMed
Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A. & Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment, 551–552, 357366. https://doi.org/10.1016/j.scitotenv.2016.01.182CrossRefGoogle ScholarPubMed
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Pöppl, R., Masselink, R. & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?. Science of the Total Environment, 644, 15571572. https://doi.org/10.1016/j.scitotenv.2018.06.342CrossRefGoogle ScholarPubMed
Keesstra, S. D., Davis, J., Masselink, R. H., Casalí, J., Peeters, E. T. H. M. & Dijksma, R. (2019). Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain. Journal of Soils Sediments, 19, 15981612. https://doi.org/10.1007/s11368-018-02223-0CrossRefGoogle Scholar
Klaus, J., & McDonnell, J. J. (2013). Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 505, 4764.CrossRefGoogle Scholar
Kleine, L., Tetzlaff, D., Smith, A., Goldhammer, T. & Soulsby, C. (2021). Using isotopes to understand landscape-scale connectivity in a groundwater-dominated, lowland catchment under drought conditions. Hydrological Processes, 35. https://doi.org/10.1002/hyp.14197CrossRefGoogle Scholar
Keesstra, S. D., Temme, A. J. A. M., Schoorl, J. M. & Visser, S. M. (2014). Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology, 212, 97107. https://doi.org/10.1016/j.geomorph.2013.04.021CrossRefGoogle Scholar
Koch, J. C., Dornblaser, M. M., & Striegl, R. G. (2021). Storm‐scale and seasonal dynamics of carbon export from a nested subarctic watershed underlain by permafrost. Journal of Geophysical Research: Biogeosciences, 126(8), e2021JG006268.Google Scholar
Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M. & Distel, R. A. (2013). Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393399. doi:10.1002/ldr.1145CrossRefGoogle Scholar
Lecce, S. A., & Pavlowsky, R. T. (2014). Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology, 206, 122132.CrossRefGoogle Scholar
Li, S., Lu, J., Liang, G., Wu, X., Zhang, M., Plougonven, E., Wang, Y., Gao, L., Abdelrhman, A. A., Song, X., Liu, X. & Degré, A. (2021). Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances. Land Degradation & Development, 32, 10461059. https://doi.org/10.1002/ldr.3779CrossRefGoogle Scholar
Li, X., Fu, S., Hu, Y., & Liu, B. (2022). Effects of rock fragment coverage on soil erosion: Differ among rock fragment sizes?. CATENA, 214, 106248.CrossRefGoogle Scholar
Lizaga, I., Gaspar, L., Blake, W. H., Latorre, B., & Navas, A. (2019). Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event. Geomorphology, 341, 216229.CrossRefGoogle Scholar
Llena, M., Vericat, D., Cavalli, M., Crema, S., & Smith, M. W. (2019). The effects of land use and topographic changes on sediment connectivity in mountain catchments. Science of the Total Environment, 660, 899912.CrossRefGoogle ScholarPubMed
López-Vicente, M., Kramer, H. & Keesstra, S. (2021a). Effectiveness of soil erosion barriers to reduce sediment connectivity at small basin scale in a fire-affected forest. Journal of Environmental Management, 278. https://doi.org/10.1016/j.jenvman.2020.111510CrossRefGoogle Scholar
López-Vicente, M., Cerdà, A., Kramer, H. & Keesstra, S. (2021b). Post-fire practices benefits on vegetation recovery and soil conservation in a Mediterranean area. Land Use Policy, 111, 105776. https://doi.org/10.1016/j.landusepol.2021.105776CrossRefGoogle Scholar
López-Vicente, M., González-Romero, J., & Lucas-Borja, M. E. (2020). Forest fire effects on sediment connectivity in headwater sub-catchments: Evaluation of indices performance. Science of the Total Environment, 732, 139206.CrossRefGoogle ScholarPubMed
Lugato, E., Smith, P., Borrelli, P., Panagos, P., Ballabio, C., Orgiazzi, A., Fernandez-Ugalde, O., Montanarella, L. & Jones, A (2018). Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 4(11), eaau3523.CrossRefGoogle ScholarPubMed
Luk, S. H., Abrahams, A. D., & Parsons, A. J. (1993). Sediment sources and sediment transport by rill flow and interrill flow on a semi-arid piedmont slope, southern Arizona. Catena, 20(1–2), 93111.CrossRefGoogle Scholar
Martinez‐Agirre, A., Álvarez‐Mozos, J., Milenković, M., Pfeifer, N., Giménez, R., Valle, J. M., & Rodríguez, Á. (2020). Evaluation of Terrestrial Laser Scanner and Structure from Motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils. Earth Surface Processes and Landforms, 45(3), 605621.CrossRefGoogle Scholar
Masselink, R. J. H., Temme, A. J. A. M., Giménez, R., Casalí, J. & Keesstra, S. D. (2017). Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica / Geographical Research, 43. https://doi.org/10.18172/cig.3169Google Scholar
Mekonnen, M., Keesstra, S. D., Baartman, J. E., Stroosnijder, L., & Maroulis, J. (2017). Reducing sediment connectivity through man‐made and natural sediment sinks in the Minizr catchment, Northwest Ethiopia. Land Degradation & Development, 28(2), 708717.CrossRefGoogle Scholar
Miller, J. R., Watkins, X., O’Shea, T., & Atterholt, C. (2021). Controls on the spatial distribution of trace metal concentrations along the bedrock-dominated South Fork New River, North Carolina. Geosciences, 11(12), 519.CrossRefGoogle Scholar
Mouyen, M., Steer, P., Chang, K. J., Le Moigne, N., Hwang, C., Hsieh, W. C., Jeandet, L, et al. (2020). Quantifying sediment mass redistribution from joint time-lapse gravimetry and photogrammetry surveys. Earth Surface Dynamics, 8(2), 555577.CrossRefGoogle Scholar
Novara, A., Pulido, M., Rodrigo-Comino, J., Di Prima, S., Smith, P., Gristina, L., Giménez-Morera, A., Terol, E., Salesa, D. & Keesstra, S. (2019). Long-term organic farming on a citrus plantation results in soil organic matter recovery. Cuadernos de Investigación Geográfica, 45, 271286. http://doi.org/10.18172/cig.3794CrossRefGoogle Scholar
Old, G., Naden, P., Granger, S. J., Bilotta, G. S., Brazier, R. E. & Macleod, C. J. A. (2012). A novel application of natural fluorescence to understand the sources and transport pathways of pollutants from livestock farming in small headwater catchments. Science of the Total Environment, 417, 169182.CrossRefGoogle ScholarPubMed
Owens, P. N., Blake, W. H., Giles, T. R., & Williams, N. D. (2012). Determining the effects of wildfire on sediment sources using 137Cs and unsupported 210Pb: The role of landscape disturbances and driving forces. Journal of Soils and Sediments, 12(6), 982994.CrossRefGoogle Scholar
Oyewumi, O., Cavanaugh, C., Guzzardi, D., & Costa, M. (2022). Geochemical assessment of trace element concentrations in the Farmington River, Connecticut, Northeastern, USA. Environmental Monitoring and Assessment, 194(5), 115.CrossRefGoogle ScholarPubMed
Palacio, R. G., Bisigato, A. J. & Bouza, B. J. (2014). Soil erosion in three grazed plant communities in northeastern Patagonia. Land Degradation and Development, 25, 594603. doi:10.1002/ldr.2289CrossRefGoogle Scholar
Parsons, A. J., Brazier, R. E., Wainwright, J., & Powell, D. M. (2006). Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(11), 13841393.CrossRefGoogle Scholar
Parsons, A. J., Bracken, L., Pöppl, R. E., Wainwright, J. & Keesstra, S. D. (2015). Introduction to special issue on connectivity in water and sediment dynamics. Earth Surface Processes and Landforms, 40, 12751277. https://doi.org/10.1002/esp.3714CrossRefGoogle Scholar
Petit, S. & Burel, F. (1998). Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agriculture, Ecosystems and Environment, 69, 243252.CrossRefGoogle Scholar
Powell, D., Brazier, R., Parsons, A., Wainwright, J. & Nichols, M. (2007). Sediment transfer and storage in dryland headwater streams. Geomorphology, 88 (1–2), 152166.CrossRefGoogle Scholar
Prats, S. A., Malvar, M. C., Simões-Vieira, D. C., MacDonald, L. & Keizer, J. J. (2013). Effectiveness of hydro- mulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degradation & Development, doi:10.1002/ldr.2236.Google Scholar
Priddy, C. L., Pringle, J. K., Clarke, S. M., & Pettigrew, R. P. (2019). Application of photogrammetry to generate quantitative geobody data in ephemeral fluvial systems. The Photogrammetric Record, 34(168), 428444.CrossRefGoogle Scholar
Puttock, A., Macleod, C., Bol, R., Sessford, P., Dungait, J. & Brazier, R. E. (2013). Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semi‐arid grass to woody vegetation transitions. Earth Surface Processes and Landforms, 38 (13), 16021611.CrossRefGoogle Scholar
Richards, G., Gilmore, T. E., Mittelstet, A. R., Messer, T. L., & Snow, D. D. (2021). Baseflow nitrate dynamics within nested watersheds of an agricultural stream in Nebraska, USA. Agriculture, Ecosystems & Environment, 308, 107223.CrossRefGoogle Scholar
Rodrigo‐Comino, J., Ponsoda‐Carreres, M., Salesa, D., Terol, E., Gyasi‐Agyei, Y., & Cerdà, A. (2020). Soil erosion processes in subtropical plantations (Diospyros kaki) managed under flood irrigation in Eastern Spain. Singapore Journal of Tropical Geography, 41(1), 120135.CrossRefGoogle Scholar
Rodrigo-Comino, J., Terol, E., Mora, G., Gimenez-Morera, A., & Cerdà, A. (2020). Vicia sativa Roth. can reduce soil and water losses in recently planted vineyards (Vitis vinifera L.). Earth Systems and Environment. https://doi.org/10.1007/s41748-020-00191-5CrossRefGoogle Scholar
Rodrigo Comino, J., Keesstra, S. D., & Cerdà, A. (2018). Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 43(10), 21932206.CrossRefGoogle Scholar
Rodrigo Comino, J. & Cerdà, A. (2018). Improving stock unearthing method to measure soil erosion rates in vineyards. Ecological Indicators, 85, 509517. https://doi.org/10.1016/j.ecolind.2017.10.042CrossRefGoogle Scholar
Sepehri, M., Ghahramani, A., Kiani-Harchegani, M., Ildoromi, A. R., Talebi, A. & Rodrigo-Comino, J. (2021). Assessment of drainage network analysis methods to rank sediment yield hotspots. Hydrological Sciences Journal, 66, 904918. https://doi.org/10.1080/02626667.2021.1899183CrossRefGoogle Scholar
Saco, P. M., Rodríguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., Baartman, J., Rodrigo-Comino, J. & Rossi, M. J. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena 186. https://doi.org/10.1016/j.catena.2019.104354CrossRefGoogle Scholar
Saco, P. M. & Moreno-De Las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49, 115126. https://doi.org/10.1029/2012WR012001CrossRefGoogle Scholar
Salesa, D. & Cerdà, A. (2020). Soil erosion on mountain trails as a consequence of recreational activities. A comprehensive review of the scientific literature. Journal of Environmental Management, 271. https://doi.org/10.1016/j.jenvman.2020.110990CrossRefGoogle ScholarPubMed
Sharma, N., Kaushal, A., Yousuf, A., Sood, A., Kaur, S., & Sharda, R. (2022). Geospatial technology for assessment of soil erosion and prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India. Environmental Science and Pollution Research, 117.Google ScholarPubMed
Shoshany, M. (2012). Identifying desert thresholds by mapping inverse and recovery potentials in patch patterns using spectral and morphological algorithms. Land Degradation & Development, 23: 331338. doi:10.1002/ldr.2146CrossRefGoogle Scholar
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., & Tetzlaff, D. (2015). Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high‐resolution isotope data. Water Resources Research, 51(9), 77597776.CrossRefGoogle ScholarPubMed
Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., et al. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219241.CrossRefGoogle ScholarPubMed
Smith, M. W., & Vericat, D. (2014). Evaluating shallow‐water bathymetry from through‐water terrestrial laser scanning under a range of hydraulic and physical water quality conditions. River Research and Applications, 30(7), 905924.CrossRefGoogle Scholar
Smith, H. G., Hopmans, P., Sheridan, G. J., Lane, P. N. J., Noske, P. J. & Bren, L. J. (2012). Impacts of wildfire and salvage harvesting on water quality and nutrient exports from radiata pine and eucalypt forest catchments in south-eastern Australia. Forest Ecology and Management, 263, 160169.CrossRefGoogle Scholar
Smith, H. G., & Blake, W. H. (2014). Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections. Geomorphology, 204, 177191.CrossRefGoogle Scholar
Smith, P. (2004). Soils as carbon sinks: The global context. Soil Use and Management, 20(2), 212218.CrossRefGoogle Scholar
Sombrero, A. & de Benito, A. (2010). Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil and Tillage Research, 107, 6470. https://doi.org/10.1016/j.still.2010.02.009CrossRefGoogle Scholar
Tekwa, I. J., Laflen, J. M., Kundiri, A. M., & Alhassan, A. B. (2021). Evaluation of WEPP versus EGEM and empirical model efficiencies in predicting ephemeral gully erosion around Mubi area, Northeast Nigeria. International Soil and Water Conservation Research, 9(1), 1125.CrossRefGoogle Scholar
Tessler, N., Wittenberg, L. & Greenbaum, N. (2013). Soil water repellency persistence after recurrent forest fires on Mount Carmel, Israel. International Journal of Wildland Fire, 22, 515526.CrossRefGoogle Scholar
Tischendorf, L. (2001). Can landscape indices predict ecological processes consistently?. Landscape Ecology, 16(3), 235254.CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Pöppl, R., Tockner, K., Bracken, L. J., Keesstra, S., Liu, L., Masselink, R., Masselink, R. & Parsons, A. J. (2018). Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science, 3. https://doi.org/10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Turnbull, L., Wainwright, J. & Brazier, R. E. (2010). Hydrology, erosion and nutrient transfers over a transition from semi-arid grassland to shrubland in the South-Western USA: A modelling assessment. Journal of Hydrology, 388 (3–4), 258272.CrossRefGoogle Scholar
Turski, M., Lipiec, J., Chodorowski, J., Sokołowska, Z., & Skic, K. (2022). Vertical distribution of soil water repellency in ortsteinic soils in relation to land use. Soil and Tillage Research, 215, 105220.CrossRefGoogle Scholar
Vannoppen, W., Vanmaercke, M., De Baets, S. & Poesen, J. (2015). A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Science Reviews, 150, 666678. https://doi.org/10.1016/j.earscirev.2015.08.011CrossRefGoogle Scholar
Walling, D. E. (2013). The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soils and Sediments, 13, 16581675.CrossRefGoogle Scholar
Walter, T. R., Salzer, J., Varley, N., Navarro, C., Arámbula-Mendoza, R., & Vargas-Bracamontes, D. (2018). Localized and distributed erosion triggered by the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras at Volcán de Colima, Mexico. Geomorphology, 319, 186198.CrossRefGoogle Scholar
With, K. A., & King, A. W. (1997). The use and misuse of neutral landscape models in ecology. Oikos, 219229.CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., Hilton, R. G., Lane, S. N., Magilligan, F. J., Meitzen, K. M., Passalacqua, P., Pöppl, R. E., Rathburn, S. L., & Sklar, L. S. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44, 426.CrossRefGoogle Scholar
Wolman, M. G. & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68(1), 5474. https://doi.org/10.1086/626637CrossRefGoogle Scholar
Yan, R., & Gao, J. (2021). Key factors affecting discharge, soil erosion, nitrogen and phosphorus exports from agricultural polder. Ecological Modelling, 452, 109586.CrossRefGoogle Scholar
Zhang, G., Mahale, V. N., Putnam, B. J., Qi, Y., Cao, Q., Byrd, A. D., Bukovcic, P, et al. (2019). Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Advances in Atmospheric Sciences, 36(6), 571588.CrossRefGoogle Scholar

References

Alder, S., Prasuhn, V., Liniger, H., Herweg, K., Hurni, H., Candinas, A. & Gujer, H.U. (2015). A high-resolution map of direct and indirect connectivity of erosion risk areas to surface waters in Switzerland – A risk assessment tool for planning and policy-making. Land Use Policy, 48, 236–49. doi:10.1016/j.landusepol.2015.06.001.CrossRefGoogle Scholar
Altmann, M., Haas, F., Heckmann, T., Liébault, F., & Becht, M. (2021). Modelling of sediment supply from torrent catchments in the Western Alps using the sediment contributing area (SCA) approach. Earth Surface Processes and Landforms, 46(5), 889906.CrossRefGoogle Scholar
Antoine, M., Javaux, M., & Bielders, C. (2009). What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale? Advances in Water Resources, 32(8), 12971310. https://doi.org/10.1016/j.advwatres.2009.05.006CrossRefGoogle Scholar
Arabkhedri, M., Heidary, K., & Parsamehr, M. R. (2021). Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials. Journal of Soils and Sediments, 21(7), 26992708.CrossRefGoogle Scholar
Aurousseau, P., Gascuel-Odoux, C., Squividant, H., Trepos, R., Tortrat, F., & Cordier, M. O. (2009). A plot drainage network as a conceptual tool for the spatial representation of surface flow pathways in agricultural catchments. Computers & Geosciences, 35(2), 276288. https://doi.org/10.1016/j.cageo.2008.09.003CrossRefGoogle Scholar
Babbie, E. R. (2010). The Practice of Social Research (12th ed.). Belmont, CA: Wadsworth Cengage Learning.Google Scholar
Bernhardt, A., Schwanghart, W., Hebbeln, D., Stuut, J-B. W. & Strecker, M. R. (2017). Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin. Earth and Planetary Science Letters, 473, 190204. doi:10.1016/j.epsl.2017.05.017CrossRefGoogle Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena, 75(3), 268277. https://doi.org/10.1016/j.catena.2008.07.006CrossRefGoogle Scholar
Brierley, G., Fryirs, K., & Jain, V. (2006). Landscape connectivity. The geographic basis of geomorphic applications. Area, 38(2), 165174.CrossRefGoogle Scholar
Brunsden, D., & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers, 4(4), 463484. Retrieved from www.jstor.org/stable/622210CrossRefGoogle Scholar
Burt, T. P., & Allison, R. J. (eds.) (2010). Sediment Cascades. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
Buter, A., Heckmann, T., Fillisetti, L., Savi, S., Mao, L., Gems, B., & Comiti, F. (2022). Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments. Geomorphology, 108128. https://doi.org/10.1016/j.geomorph.2022.108128CrossRefGoogle Scholar
Buter, A., Spitzer, A., Comiti, F., & Heckmann, T. (2020). Geomorphology of the Sulden River basin (Italian Alps) with a focus on sediment connectivity. Journal of Maps, 16(2), 890901. https://doi.org/10.1080/17445647.2020.1841036CrossRefGoogle Scholar
Calsamiglia, A., Fortesa, J., García‐Comendador, J., Lucas‐Borja, M. E., Calvo‐Cases, A., & Estrany, J. (2018a). Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation & Development, 29(4), 11981210.CrossRefGoogle Scholar
Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., … & Estrany, J. (2018b). Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment. Geomorphology, 318, 162171.CrossRefGoogle Scholar
Calsamiglia, A., Gago, J., Garcia‐Comendador, J., Bernat, J. F., Calvo‐Cases, A., & Estrany, J. (2020). Evaluating functional connectivity in a small agricultural catchment under contrasting flood events by using UAV. Earth Surface Processes and Landforms, 56, 1427. https://doi.org/10.1002/esp.4769Google Scholar
Cantreul, V., Bielders, C., Calsamiglia, A., & Degré, A. (2018). How pixel size affects a sediment connectivity index in central Belgium. Earth Surface Processes and Landforms, 43(4), 884893.CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 3141. https://doi.org/10.1016/j.geomorph.2012.05.007CrossRefGoogle Scholar
Chartin, C., Evrard, O., Laceby, J. P., Onda, Y., Ottlé, C., Lefèvre, I., & Cerdan, O. (2017). The impact of typhoons on sediment connectivity: Lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surface Processes and Landforms, 42(2), 306317. https://doi.org/10.1002/esp.4056CrossRefGoogle Scholar
Chorley, R., & Kennedy, B. (1971). Physical Geography: A Systems Approach. London: Prentice-Hall.Google Scholar
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., … Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 19912007. https://doi.org/10.5194/gmd-8-1991-2015CrossRefGoogle Scholar
Cossart, É., & Fressard, M. (2017). Assessment of structural sediment connectivity within catchments: insights from graph theory. Earth Surface Dynamics, 5(2), 253268.CrossRefGoogle Scholar
Coulthard, T. J., & van de Wiel, M. J. (2017). Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology, 277, 265281. https://doi.org/10.1016/j.geomorph.2016.05.027CrossRefGoogle Scholar
Crema, S., & Cavalli, M. (2018). SedInConnect: A stand-alone, free and open source tool for the assessment of sediment connectivity. Computers and Geosciences, 111, 3945. https://doi.org/10.1016/j.cageo.2017.10.009CrossRefGoogle Scholar
Dalla Fontana, G. D., & Marchi, L. (2003). Slope-area relationships and sediment dynamics in two alpine streams. Hydrological Processes, 17(1), 7387. https://doi.org/10.1002/hyp.1115CrossRefGoogle Scholar
De Vente, J., Poesen, J., Arabkhedri, M., & Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31(2), 155178. https://doi.org/10.1177/0309133307076485CrossRefGoogle Scholar
De Walque, B., Degré, A., Maugnard, A., & Bielders, C. L. (2017). Artificial surfaces characteristics and sediment connectivity explain muddy flood hazard in Wallonia. Catena, 158, 89101 https://doi.org/10.1016/j.catena.2017.06.016.CrossRefGoogle Scholar
Dupas, R., Delmas, M., Dorioz, J-M., Garnier, J., Moatar, F. & Gascuel-Odoux, C. (2015). Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 48, 396407. doi:10.1016/j.ecolind.2014.08.007.CrossRefGoogle Scholar
Flügel, W.-A. (1995). Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes, 9, 423436.CrossRefGoogle Scholar
Foerster, S., Wilczok, C., Brosinsky, A., & Segl, K. (2014). Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. Journal of Soils and Sediments, 14(12), 19822000.CrossRefGoogle Scholar
Fryirs, K. (2013). (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38(1), 3046.CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007a). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70(1), 4967. https://doi.org/10.1016/j.catena.2006.07.007CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Spencer, J. (2007b). Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology, 84(3–4), 297316. https://doi.org/10.1016/j.geomorph.2006.01.044CrossRefGoogle Scholar
Fryirs, K. A., Wheaton, J. M. & Brierley, G. J. (2016). An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms, 41(5): 701–10. doi:10.1002/esp.3893.CrossRefGoogle Scholar
Fryirs, K. A. (2017). River sensitivity: a lost foundation concept in fluvial geomorphology: A lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 42(1), 5570. https://doi.org/10.1002/esp.3940CrossRefGoogle Scholar
Gascuel-Odoux, C., Aurousseau, P., Doray, T., Squividant, H., Macary, F., Uny, D., & Grimaldi, C. (2011). Incorporating landscape features to obtain an object-oriented landscape drainage network representing the connectivity of surface flow pathways over rural catchments. Hydrological Processes, 25(23), 36253636. https://doi.org/10.1002/hyp.8089CrossRefGoogle Scholar
Gay, A., Cerdan, O., Mardhel, V., & Desmet, M. (2016). Application of an index of sediment connectivity in a lowland area. Journal of Soils and Sediments, 16(1), 280293. https://doi.org/10.1007/s11368-015-1235-yCrossRefGoogle Scholar
González-Romero, J., López-Vicente, M., Gómez-Sánchez, E., Peña-Molina, E., Galletero, P., Plaza-Álvarez, P., Fajardo-Cantos, A., Moya, D., de las Heras, J. & Lucas-Borja, M. E. (2022). Post-fire management effects on hillslope-stream sediment connectivity in a Mediterranean forest ecosystem. Journal of Environmental Management, 316, 115212. doi:10.1016/j.jenvman.2022.115212.CrossRefGoogle Scholar
Goodwin, B. (2003). Is landscape connectivity a dependent or independent variable? Landscape Ecology, 18, 687699.CrossRefGoogle Scholar
Haas, F., Heckmann, T., Wichmann, V., & Becht, M. (2011). Quantification and modeling of fluvial bedload discharge from hillslope channels in two alpine catchments (Bavarian Alps, Germany). Zeitschrift für Geomorphologie, Supplementary Issues, 147168.CrossRefGoogle Scholar
Harvey, A. M. (2002). Effective timescales of coupling within fluvial systems. Geomorphology, 44(3–4), 175201.CrossRefGoogle Scholar
Harvey, A. M. (2001). Coupling between hillslopes and channels in upland fluvial systems: Implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42(2–4), 225250. https://doi.org/10.1016/S0341-8162(00)00139-9CrossRefGoogle Scholar
Heckmann, T., & Vericat, D. (2018). Computing spatially distributed sediment delivery ratios: Inferring functional sediment connectivity from repeat high‐resolution digital elevation models. Earth surface processes and landforms, 43(7), 15471554.CrossRefGoogle Scholar
Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E., … & Brardinoni, F. (2018). Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Science Reviews, 187, 77108.CrossRefGoogle Scholar
Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory. Geomorphology, 182, 89103. https://doi.org/10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
Heckmann, T., Schwanghart, W., & Phillips, J. D. (2015). Graph theory – recent developments of its application in geomorphology. Geomorphology, 243, 130146. https://doi.org/10.1016/j.geomorph.2014.12.024CrossRefGoogle Scholar
Hoffmann, T. (2015). Sediment residence time and connectivity in non-equilibrium and transient geomorphic systems. Earth-Science Reviews, 150, 609627. https://doi.org/10.1016/j.earscirev.2015.07.008CrossRefGoogle Scholar
Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology, 56(1–2), 7994. https://doi.org/10.1016/S0169-555X(03)00047-3CrossRefGoogle Scholar
Hooke, J. M., Sandercock, P., Cammeraat, L. H., Lesschen, J. P., Borselli, L., Torri, D., … Navarro-Cano, J. A. (2017). Mechanisms of degradation and identification of connectivity and erosion hotspots. In Hooke, J. & Sandercock, P. (eds.), Combating Desertification and Land Degradation (pp. 1337). Cham: Springer International Publishing.CrossRefGoogle Scholar
Hooke, J., & Souza, J. (2021). Challenges of mapping, modelling and quantifying sediment connectivity. Earth-Science Reviews, 223, 103847. https://doi.org/10.1016/j.earscirev.2021.103847CrossRefGoogle Scholar
Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – A pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147156. https://doi.org/10.1016/j.geomorph.2012.11.005CrossRefGoogle Scholar
Jordán, F., & Scheuring, I. (2004). Network ecology: Topological constraints on ecosystem dynamics. Physics of Life Reviews, 1(3), 139172. https://doi.org/10.1016/j.plrev.2004.08.001CrossRefGoogle Scholar
Kalantari, Z., Cavalli, M., Cantone, C., Crema, S., & Destouni, G. (2017). Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment, 581, 386398.CrossRefGoogle ScholarPubMed
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Pöppl, R., Masselink, R., & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 15571572. https://doi.org/10.1016/j.scitotenv.2018.06.342CrossRefGoogle ScholarPubMed
Kinnell, P. I. A. (2004). Sediment delivery ratios: A misaligned approach to determining sediment delivery from hillslopes. Hydrological Processes, 18(16), 31913194. https://doi.org/10.1002/hyp.5738CrossRefGoogle Scholar
Koci, J., Sidle, R. C., Jarihani, B., & Cashman, M. J. (2019). Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the great barrier reef using structure‐from‐motion photogrammetry. Land Degradation & Development, 64(11), 223. https://doi.org/10.1002/ldr.3421Google Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J. N. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210227.CrossRefGoogle Scholar
Lane, S. N., Reaney, S. M., & Heathwaite, A. L. (2009). Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research, 45(8), 110.CrossRefGoogle Scholar
Lane, S. N., Brookes, C. J., Kirkby, M. J., & Holden, J. (2004). A network-index-based version of top model for use with high-resolution digital topographic data. Hydrological Processes, 18(1), 191201. https://doi.org/10.1002/hyp.5208CrossRefGoogle Scholar
Lisenby, P. E., Croke, J. & Fryirs, K. A. (2018). Geomorphic effectiveness: A linear concept in a non-linear world. Earth Surface Processes and Landforms, 43(1): 420. doi:10.1002/esp.4096.CrossRefGoogle Scholar
Liverman, D., Hanson, M. E., Brown, B. J., & MeridethJr., R. W. (1988). Global sustainability: Toward measurement. Environmental Management, 12(2), 133143.CrossRefGoogle Scholar
Liu, Y., Zhao, L. & Yu, X. (2020). A sedimentological connectivity approach for assessing on-site and off-site soil erosion control services. Ecological Indicators, 115, 106434. doi:10.1016/j.ecolind.2020.106434.CrossRefGoogle Scholar
Lizaga, I., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2018). Enhancing connectivity index to assess the effects of land use changes in a mediterranean catchment. Land Degradation & Development, 29(3), 663675. https://doi.org/10.1002/ldr.2676CrossRefGoogle Scholar
López-Vicente, M., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2015). Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (central Spanish pre-pyrenees). Cuadernos De Investigación Geográfica, 41(1), 127. https://doi.org/10.18172/cig.2649CrossRefGoogle Scholar
López-Vicente, M., Nadal-Romero, E., & Cammeraat, E. L. H. (2017). Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development, 28(4), 12981310. https://doi.org/10.1002/ldr.2531CrossRefGoogle Scholar
López-Vicente, M., & Ben-Salem, N. (2019). Computing structural and functional flow and sediment connectivity with a new aggregated index: A case study in a large Mediterranean catchment. Science of the Total Environment, 651, 179191.CrossRefGoogle Scholar
Magilligan, F. J., Graber, B. E., Nislow, K. H., Chipman, J. W., Sneddon, C. S. & Fox, C. A. (2016). River restoration by dam removal: Enhancing connectivity at watershed scales. Elementa: Science of the Anthropocene, 4, 108.Google Scholar
Marchamalo, M., Hooke, J. M., & Sandercock, P. J. (2016). Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degradation & Development, 27(4), 10321044. https://doi.org/10.1002/ldr.2352CrossRefGoogle Scholar
Marchi, L., & Dalla Fontana, G. (2005). GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environmental Geology, 48(2), 218228. https://doi.org/10.1007/s00254-005-1292-4CrossRefGoogle Scholar
Mardhel, V., Frantar, P., Uhan, J., & Mio, A. (2004). Index of development and persistence of the river networks as a component of regional groundwater vulnerability assessment in Slovenia. International Conference on groundwater vulnerability assessment and mappingGoogle Scholar
Martinez‐Agirre, A., Álvarez‐Mozos, J., Milenković, M., Pfeifer, N., Giménez, R., Valle, J. M., & Rodríguez, Á. (2020). Evaluation of Terrestrial Laser Scanner and Structure from Motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils. Earth Surface Processes and Landforms, 45(3), 605621. https://doi.org/10.1002/esp.4758CrossRefGoogle Scholar
Martini, L., Cavalli, M., & Picco, L. (2022). Predicting sediment connectivity in a mountain basin: A quantitative analysis of the index of connectivity. Earth Surface Processes and Landforms, 47(6), 15001513. https://doi.org/10.1002/esp.5331CrossRefGoogle Scholar
Meerkerk, A. L., van Wesemael, B., & Bellin, N. (2009). Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes, 23(19), 27922803. https://doi.org/10.1002/hyp.7376CrossRefGoogle Scholar
Najafi, S., Dragovich, D., Heckmann, T., & Sadeghi, S. H. (2021a). Sediment connectivity concepts and approaches. Catena, 196, 104880.CrossRefGoogle Scholar
Najafi, S., Sadeghi, S. H., & Heckmann, T. (2021b). Analysis of sediment accessibility and availability concepts based on sediment connectivity throughout a watershed. Land Degradation & Development, 32(10), 30233044.CrossRefGoogle Scholar
Newman, M. (2010). Networks: An Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Nunes, J. P., Wainwright, J., Bielders, C. L., Darboux, F., Fiener, P., Finger, D., & Turnbull, L. (2018). Better models are more effectively connected models. Earth Surface Processes and Landforms, 32(4), 1297. https://doi.org/10.1002/esp.4323Google Scholar
Ortíz-Rodríguez, A. J., Borselli, L., & Sarocchi, D. (2017). Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena, 157, 90111. https://doi.org/10.1016/j.catena.2017.05.009CrossRefGoogle Scholar
Otto, J.-C. (2006). Paraglacial sediment storage quantification in the Turtmann Valley, Swiss Alps (Doctoral Dissertation), Bonn. Retrieved from http://hss.ulb.uni-bonn.de/diss_online/Google Scholar
Parsons, A. J., Wainwright, J., Brazier, R. E., & Powell, D. M. (2006). Is sediment delivery a fallacy? Earth Surface Processes and Landforms, 31(10), 13251328. https://doi.org/10.1002/esp.1395CrossRefGoogle Scholar
Phillips, J. D., Schwanghart, W., & Heckmann, T. (2015). Graph theory in the geosciences. Earth-Science Reviews, 143, 147160. https://doi.org/10.1016/j.earscirev.2015.02.002CrossRefGoogle Scholar
Pöppl, R. E., & Parsons, A. J. (2018). The geomorphic cell: A basis for studying connectivity. Earth Surface Processes and Landforms, 43(5), 11551159. https://doi.org/10.1002/esp.4300CrossRefGoogle Scholar
Pöppl, R. E., Dilly, L. A., Haselberger, S., Renschler, C. S. & Baartman, J. E. M. (2019). Combining soil erosion modeling with connectivity analyses to assess lateral fine sediment input into agricultural streams. Water, 11(9), 1793. https://doi.org/10.3390/w11091793CrossRefGoogle Scholar
Reid, S. C., Lane, S. N., Montgomery, D. R., & Brookes, C. J. (2007). Does hydrological connectivity improve modelling of coarse sediment delivery in upland environments? Geomorphology, 90(3–4), 263282. https://doi.org/10.1016/j.geomorph.2006.10.023CrossRefGoogle Scholar
Schopper, N., Mergili, M., Frigerio, S., Cavalli, M., & Pöppl, R. (2019). Analysis of lateral sediment connectivity and its connection to debris flow intensity patterns at different return periods in the Fella River system in northeastern Italy. Science of the Total Environment, 658, 15861600. https://doi.org/10.1016/j.scitotenv.2018.12.288CrossRefGoogle ScholarPubMed
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., & Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563.CrossRefGoogle Scholar
Schwanghart, W., & Kuhn, N. J. (2010). TopoToolbox: A set of Matlab functions for topographic analysis. Environmental Modelling & Software, 25(6), 770781.CrossRefGoogle Scholar
Shore, M., Murphy, P. N. C., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., Cushen, M., Mechan, S., Shine, O. & Melland, A.R. (2013). Evaluation of a surface hydrological connectivity index in agricultural catchments. Environmental Modelling & Software, 47, 715. doi:10.1016/j.envsoft.2013.04.003.CrossRefGoogle Scholar
Singh, M., Tandon, S. K., & Sinha, R. (2017). Assessment of connectivity in a water-stressed wetland (Kaabar Tal) of Kosi-Gandak interfan, north Bihar Plains, India. Earth Surface Processes and Landforms, 42(13), 19821996. https://doi.org/10.1002/esp.4156CrossRefGoogle Scholar
Skolaut, C., Liébault, F., Habersack, H., Lenzi, M. A., Rusjan, S., Sodnik, J. & Pichler, A. (2015). Synthesis Report: Sediment Management in Alpine Basins (SedAlp): Integrating sediment continuum, risk mitigation and hydropower. Accessed September 15, 2017. www.sedalp.eu/download/reports.shtmlGoogle Scholar
Smetanova, A., Paton, E. N., Maynard, C., Tindale, S., Fernández-Getino, A. P., Perez, M. J. M., Bracken, L., Le Bissonnaid, L. & Keesstra, S. (2018). Stakeholders’ perception of the relevance of water and sediment connectivity in water and land management. Land Degradation and Development, 29, 15412036, doi:10.1002/ldr.2934.CrossRefGoogle Scholar
Souza, J. O., Correa, A. C. & Brierley, G. J., (2016). An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco Creek Watershed, Semiarid Brazil. Catena. 138, 1329. https://doi.org/10.1016/j.catena.2015.11.006CrossRefGoogle Scholar
Straffelini, E., Cucchiaro, S., & Tarolli, P. (2021). Mapping potential surface ponding in agriculture using UAV‐SfM. Earth Surface Processes and Landforms. Advance online publication. https://doi.org/10.1002/esp.5135CrossRefGoogle Scholar
Tarboton, D. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309319.CrossRefGoogle Scholar
Thompson, J. J. D., Doody, D. G., Flynn, R. & Watson, C. J. (2012). Dynamics of critical source areas: does connectivity explain chemistry? The Science of the Total Environment, 435-436: 499508. doi:10.1016/j.scitotenv.2012.06.104.CrossRefGoogle ScholarPubMed
Trevisani, S., & Cavalli, M. (2016). Topography-based flow-directional roughness: Potential and challenges. Earth Surface Dynamics, 4(2), 343358.CrossRefGoogle Scholar
Turley, M., Hassan, M.A. & Slaymaker, O. (2021). Quantifying sediment connectivity: Moving toward a holistic assessment through a mixed methods approach. Earth Surface Processes and Landforms, 46(12): 25012519. doi:10.1002/esp.5191.CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Pöppl, R., Tockner, K., … Parsons, A. J. (2018). Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science, 3(1), 47. https://doi.org/10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Vigiak, O., Beverly, C., Roberts, A., Thayalakumaran, T., Dickson, M., McInnes, J. & Borselli, L., (2016). Detecting changes in sediment sources in drought periods: The Latrobe River case study. Environmental Modelling & Software, 85, 4255. https://doi.org/10.1016/j.envsoft.2016.08.011CrossRefGoogle Scholar
Walling, D. E. (1983). The sediment delivery problem: Scale Problems in Hydrology. Journal of Hydrology, 65(1–3), 209237. https://doi.org/10.1016/0022-1694(83)90217-2CrossRefGoogle Scholar
Wilson, J. P., & Bishop, M. P. (2013). 3.7 Geomorphometry. In Shroder, J., Switzer, A. D., & Kennedy, D. M. (eds.), Treatise on Geomorphology (pp. 162186). Elsevier. https://doi.org/10.1016/B978-0-12-374739-6.00049-XCrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., … & Sklar, L. S. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44(1), 426.CrossRefGoogle Scholar
Wohl, E., & Beckman, N. D. (2014). Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology, 205, 2735. https://doi.org/10.1016/j.geomorph.2011.10.022CrossRefGoogle Scholar
Wohl, E., Rathburn, S., Chignell, S., Garrett, K., Laurel, D., Livers, B., … Wegener, P. (2017). Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado. Geomorphology, 277, 171181. https://doi.org/10.1016/j.geomorph.2016.05.004CrossRefGoogle Scholar

References

Antoine, M., Javaux, M., & Bielders, C., 2009. What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale? Advances in Water Resources. 32, 12971310. https://doi.org/10.1016/j.advwatres.2009.05.006CrossRefGoogle Scholar
Antoine, M., Javaux, M., & Bielders, C. L., 2011. Integrating subgrid connectivity properties of the micro-topography in distributed runoff models, at the interrill scale. Journal of Hydrology. 403, 213223. https://doi.org/10.1016/j.jhydrol.2011.03.027CrossRefGoogle Scholar
Arrouays, D., Poggio, L., Salazar Guerrero, O. A., & Mulder, V. L., 2020. Digital soil mapping and GlobalSoilMap. Main advances and ways forward. Geoderma Regional. 21, e00265. https://doi.org/10.1016/j.geodrs.2020.e00265CrossRefGoogle Scholar
Atkinson, J., de Clercq, W., & Rozanov, A., 2020. Multi-resolution soil-landscape characterisation in KwaZulu Natal: Using geomorphons to classify local soilscapes for improved digital geomorphological modelling. Geoderma Regional. 22, e00291. https://doi.org/10.1016/j.geodrs.2020.e00291CrossRefGoogle Scholar
Baartman, J. E. M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C., Degré, A., Cantreul, V., Cerdan, O., Grangeon, T., Fiener, P., et al. 2020. What do models tell us about water and sediment connectivity? Geomorphology. 367, 107300. https://doi.org/10.1016/j.geomorph.2020.107300CrossRefGoogle Scholar
Bedau, M. A., 1997. Weak emergence. Noûs. 31, 375399. https://doi.org/10.1111/0029-4624.31.s11.17CrossRefGoogle Scholar
Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A.-X., & Scholten, T., 2014. Hyper-scale digital soil mapping and soil formation analysis. Geoderma. 213, 578588. https://doi.org/10.1016/j.geoderma.2013.07.031CrossRefGoogle Scholar
Benda, L., & Dunne, T., 1997a. Stochastic forcing of sediment routing and storage in channel networks. Water Resources Research. 33, 28652880. https://doi.org/10.1029/97WR02387CrossRefGoogle Scholar
Benda, L., & Dunne, T., 1997b. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resources Research. 33, 28492863. https://doi.org/10.1029/97WR02388CrossRefGoogle Scholar
Beven, K., 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences. 5, 112. https://doi.org/10.5194/hess-5-1-2001CrossRefGoogle Scholar
Beven, K. J., 2000. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences. 4, 203213. https://doi.org/10.5194/hess-4-203-2000CrossRefGoogle Scholar
Bizzi, S., Tangi, M., Schmitt, R. J. P., Pitlick, J., Piégay, H., & Castelletti, A. F., 2021. Sediment transport at the network scale and its link to channel morphology in the braided Vjosa River system. Earth Surface Processes and Landforms. 46, 29462962. https://doi.org/10.1002/esp.5225CrossRefGoogle Scholar
Blöschl, G., 1999. Scaling issues in snow hydrology. Hydrological Processes. 13, 21492175. https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Blöschl, G., Grayson, R. B., & Sivapalan, M., 1995. On the representative elementary area (REA) concept and its utility for distributed rainfall-runoff modelling. Hydrological Processes. 9, 313330. https://doi.org/10.1002/hyp.3360090307CrossRefGoogle Scholar
Blöschl, G., & Sivapalan, M., 1995. Scale issues in hydrological modelling: A review. Hydrological Processes. 9, 251290. https://doi.org/10.1002/hyp.3360090305CrossRefGoogle Scholar
Bogen, J., & Woodward, J., 1988. Saving the phenomena. The Philosophical Review. 97, 303. https://doi.org/10.2307/2185445CrossRefGoogle Scholar
Bonfatti, B. R., Demattê, J. A. M., Marques, K. P. P., Poppiel, R. R., Rizzo, R., Mendes, W. de S., Silvero, N. E. Q., & Safanelli, J. L., 2020. Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology. 367, 107305. https://doi.org/10.1016/j.geomorph.2020.107305CrossRefGoogle Scholar
Braun, J., & Sambridge, M., 1997. Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Research. 9, 2752. https://doi.org/10.1046/j.1365-2117.1997.00030.xCrossRefGoogle Scholar
Callaghan, K. L., & Wickert, A. D., 2019. Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill. Earth Surface Dynamics. 7, 737753. https://doi.org/10.5194/esurf-7-737-2019CrossRefGoogle Scholar
Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M., 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms. 31, 444456. https://doi.org/10.1002/esp.1278CrossRefGoogle Scholar
Caviedes‐Voullième, D., Ahmadinia, E., & Hinz, C., 2021. Interactions of microtopography, slope and infiltration cause complex rainfall‐runoff behavior at the hillslope scale for single rainfall events. Water Resources Research. 57. https://doi.org/10.1029/2020WR028127CrossRefGoogle Scholar
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., & Peters-Lidard, C. D., 2017. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences. 21, 34273440. https://doi.org/10.5194/hess-21-3427-2017CrossRefGoogle ScholarPubMed
Cooper, J. R., Wainwright, J., Parsons, A. J., Onda, Y., Fukuwara, T., Obana, E., Kitchener, B., Long, E. J., & Hargrave, G. H., 2012. A new approach for simulating the redistribution of soil particles by water erosion: A marker-in-cell model: Soil erosion, marker-in-cell model. Journal of Geophysical Research. 117. https://doi.org/10.1029/2012JF002499CrossRefGoogle Scholar
Cossart, E., 2016. L’(in)efficacité géomorphologique des cascades sédimentaires en question: les apports d’une analyse réseau. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.27625CrossRefGoogle Scholar
Coulthard, T. J., Macklin, M. G., & Kirkby, M. J., 2002. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms. 27, 269288. https://doi.org/10.1002/esp.318CrossRefGoogle Scholar
Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R., 2013. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution: Integrating hydrodynamics in landscape evolution models. Earth Surface Processes and Landforms. 38, 18971906. https://doi.org/10.1002/esp.3478CrossRefGoogle Scholar
Crave, A., & Davy, P., 2001. A stochastic “precipiton” model for simulating erosion/sedimentation dynamics. Computers & Geosciences. 27, 815827. https://doi.org/10.1016/S0098-3004(00)00167-9CrossRefGoogle Scholar
Crema, S., Llena, M., Calsamiglia, A., Estrany, J., Marchi, L., Vericat, D., & Cavalli, M., 2020. Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses. Earth Surface Processes and Landforms. 45, 736755. https://doi.org/10.1002/esp.4739CrossRefGoogle Scholar
Czuba, J. A., & Foufoula-Georgiou, E., 2015. Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research. 51, 14011421. https://doi.org/10.1002/2014WR016139CrossRefGoogle Scholar
Czuba, J. A., & Foufoula-Georgiou, E., 2014. A network-based framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resources Research. 50, 38263851. https://doi.org/10.1002/2013WR014227CrossRefGoogle Scholar
Czuba, J. A., Foufoula‐Georgiou, E., Gran, K. B., Belmont, P., & Wilcock, P. R., 2017. Interplay between spatially explicit sediment sourcing, hierarchical river‐network structure, and in‐channel bed material sediment transport and storage dynamics. Journal of Geophysical Research. 122, 10901120. https://doi.org/10.1002/2016JF003965CrossRefGoogle Scholar
Darby, S. E., Trieu, H. Q., Carling, P. A., Sarkkula, J., Koponen, J., Kummu, M., Conlan, I., & Leyland, J., 2010. A physically based model to predict hydraulic erosion of fine-grained riverbanks: The role of form roughness in limiting erosion. Journal of Geophysical Research. 115, F04003. https://doi.org/10.1029/2010JF001708CrossRefGoogle Scholar
Defina, A., 2000. Two-dimensional shallow flow equations for partially dry areas. Water Resources Research. 36, 32513264. https://doi.org/10.1029/2000WR900167CrossRefGoogle Scholar
Edmonds, B., Le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root, H., & Squazzoni, F., 2019. Different modelling purposes. Journal of Artificial Societies and Social Simulation. 22, 6. https://doi.org/10.18564/jasss.3993CrossRefGoogle Scholar
England, C. B., Onstad, C. A., 1968. Isolation and characterization of hydrologic response units within agricultural watersheds. Water Resources Research. 4, 7377. https://doi.org/10.1029/WR004i001p00073CrossRefGoogle Scholar
Epstein, J. M., 2008. Why model? Journal of Artificial Societies and Social Simulation. 11, 12.Google Scholar
Fan, Y., & Bras, R. L., 1995. On the concept of a representative elementary area in catchment runoff. Hydrological Processes. 9, 821832. https://doi.org/10.1002/hyp.3360090708CrossRefGoogle Scholar
Fatichi, S., Katul, G. G., Ivanov, V. Y., Pappas, C., Paschalis, A., Consolo, A., Kim, J., & Burlando, P., 2015. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resources Research. 51, 35053524. https://doi.org/10.1002/2014WR016102CrossRefGoogle Scholar
Favis-Mortlock, D., 1998. A self-organizing dynamic systems approach to the simulation of rill initiation and development on hillslopes. Computers & Geosciences. 24, 353372. https://doi.org/10.1016/S0098-3004(97)00116-7CrossRefGoogle Scholar
Favis-Mortlock, D. T., Boardman, J., Parsons, A. J., & Lascelles, B., 2000. Emergence and erosion: A model for rill initiation and development. Hydrological Processes. 14, 21732205. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2173::AID-HYP61>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Flügel, W.-A., 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes. 9, 423436. https://doi.org/10.1002/hyp.3360090313CrossRefGoogle Scholar
Forrest, S. B., & Haff, P. K., 1992. Mechanics of wind ripple stratigraphy. Science. 255, 12401243. https://doi.org/10.1126/science.255.5049.1240CrossRefGoogle ScholarPubMed
Frigg, R., Thompson, E., & Werndl, C., 2015. Philosophy of climate science part I: Observing climate change: Observing climate change. Philosophy Compass. 10, 953964. https://doi.org/10.1111/phc3.12294CrossRefGoogle Scholar
Goodrich, D. C., Burns, I. S., Unkrich, C. L., Semmens, D. J., Guertin, D. P., Hernandez, M., Yatheendradas, S., Kennedy, J. R., & Levick, L. R., 2012. KINEROS2/AGWA: Model use, calibration, and validation. Transactions of the ASABE. 55, 15611574. https://doi.org/10.13031/2013.42264CrossRefGoogle Scholar
Gran, K. B., & Czuba, J. A., 2017. Sediment pulse evolution and the role of network structure. Geomorphology. 277, 1730. https://doi.org/10.1016/j.geomorph.2015.12.015CrossRefGoogle Scholar
Haff, P. K., 2001. Waterbots, In Harmon, R. S., & Doe, W. W. (eds.), Landscape Erosion and Evolution Modeling. Springer US: Boston, MA, 239275. https://doi.org/10.1007/978-1-4615-0575-4_9CrossRefGoogle Scholar
Harel, M.-A., & Mouche, E., 2014. Is the connectivity function a good indicator of soil infiltrability distribution and runoff flow dimension?: Connectivity function. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.3604CrossRefGoogle Scholar
Harel, M.-A., & Mouche, E., 2013. 1-D steady state runoff production in light of queuing theory: Heterogeneity, connectivity, and scale: 1-D Runoff production and queuing theory. Water Resources Research. 49, 79737991. https://doi.org/10.1002/2013WR013596CrossRefGoogle Scholar
Hawkins, R. H., & Cundy, T. W., 1987. Steady-state analysis of infiltration and overland flow for spatially-varied hillslopes. Journal of the American Water Resources Association. 23, 251256. https://doi.org/10.1111/j.1752-1688.1987.tb00804.xCrossRefGoogle Scholar
Heckmann, T., & Schwanghart, W., 2013. Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory. Geomorphology. 182, 89103. https://doi.org/10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
Her, Y., Heatwole, C. D., & Kang, M. S., 2015. Interpolating SRTM elevation data to higher resolution to improve hydrologic analysis. Journal of the American Water Resources Association. 51, 10721087. https://doi.org/10.1111/jawr.12287CrossRefGoogle Scholar
Hubbert, M. K. 1956. Darcy’s law and the field equations of the flow of underground fluids. Transactions of the AIME. 207, 222239.CrossRefGoogle Scholar
Hughes, J. D., Decker, J. D., & Langevin, C. D., 2011. Use of upscaled elevation and surface roughness data in two-dimensional surface water models. Advances in Water Resources. 34, 11511164. https://doi.org/10.1016/j.advwatres.2011.02.004CrossRefGoogle Scholar
Hutton, C., Nicholas, A., & Brazier, R., 2014. Sub-grid scale parameterization of hillslope runoff and erosion processes for catchment-scale models of semi-arid landscapes: Sub-grid scale runoff and erosion modelling. Hydrological Processes. 28, 17131721. https://doi.org/10.1002/hyp.9712CrossRefGoogle Scholar
Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., & Huxman, T. E., 2010. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation: Soil moisture spatial heterogeneity. Water Resources Research. 46. https://doi.org/10.1029/2009WR008611CrossRefGoogle Scholar
Jovanovic, T., Hale, R. L., Gironás, J., & Mejia, A., 2019. Hydrological functioning of an evolving urban stormwater network. Water Resources Research. 55, 65176533. https://doi.org/10.1029/2019WR025236CrossRefGoogle Scholar
Kim, J., Dwelle, M. C., Kampf, S. K., Fatichi, S., & Ivanov, V. Y., 2016. On the non-uniqueness of the hydro-geomorphic responses in a zero-order catchment with respect to soil moisture. Advances in Water Resources. 92, 7389. https://doi.org/10.1016/j.advwatres.2016.03.019CrossRefGoogle Scholar
Kirkby, M. J., 1987. Models in physical geography, In Clark, M. J., Gregory, K. J., Gurnell, A. M. (eds.), Horizons in Physical Geography. MacMillan, Basingstoke, 4761.CrossRefGoogle Scholar
Kitcher, P., 1995. The Advancement of Science. Oxford University Press, Oxford. https://doi.org/10.1093/0195096533.001.0001CrossRefGoogle Scholar
Lane, S. N., 2005. Roughness – time for a re-evaluation? Earth Surface Processes and Landforms. 30, 251253. https://doi.org/10.1002/esp.1208CrossRefGoogle Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J.-N., 2017. Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology. 277, 210227. https://doi.org/10.1016/j.geomorph.2016.02.015CrossRefGoogle Scholar
Leavesley, G. H., Lichty, R. W., Troutman, B. M., & Saindon, L. G., 1983. Precipitation-Runoff Modeling System: User’s Manual (No. 83–4238). Water-Resources Investigations Report. Denver, CO.Google Scholar
Lisenby, P. E., & Fryirs, K. A., 2017. ‘Out with the Old?’ Why coarse spatial datasets are still useful for catchment‐scale investigations of sediment (dis)connectivity. Earth Surface Processes and Landforms. 42, 15881596. https://doi.org/10.1002/esp.4131CrossRefGoogle Scholar
Mahoney, D. T., Fox, J., Al-Aamery, N., & Clare, E., 2020a. Integrating connectivity theory within watershed modelling part I: Model formulation and investigating the timing of sediment connectivity. Science of the Total Environment. 740, 140385. https://doi.org/10.1016/j.scitotenv.2020.140385CrossRefGoogle ScholarPubMed
Mahoney, D. T., Fox, J., Al-Aamery, N., & Clare, E., 2020b. Integrating connectivity theory within watershed modelling part II: Application and evaluating structural and functional connectivity. Science of the Total Environment. 740, 140386. https://doi.org/10.1016/j.scitotenv.2020.140386CrossRefGoogle ScholarPubMed
McBratney, A. B., Mendonça Santos, M. L., & Minasny, B., 2003. On digital soil mapping. Geoderma. 117, 352. https://doi.org/10.1016/S0016-7061(03)00223-4CrossRefGoogle Scholar
McGough, A. S., Liang, S., Rapoportas, M., Grey, R., Vinod, G. K., Maddy, D., Trueman, A., & Wainwright, J., 2012. Massively parallel landscape-evolution modelling using general purpose graphical processing units. In 2012 19th International Conference on High Performance Computing. Presented at the 2012 19th International Conference on High Performance Computing (HiPC), IEEE, Pune, India, pp. 1–10. https://doi.org/10.1109/HiPC.2012.6507488CrossRefGoogle Scholar
Mewes, B., & Schumann, A. H., 2018. IPA (v1): a framework for agent-based modelling of soil water movement. Geoscientific Model Development. 11, 21752187. https://doi.org/10.5194/gmd-11-2175-2018CrossRefGoogle Scholar
Michaelides, K., & Wainwright, J., 2008. Internal testing of a numerical model of hillslope–channel coupling using laboratory flume experiments. Hydrological Processes. 22, 22742291. https://doi.org/10.1002/hyp.6823CrossRefGoogle Scholar
Michaelides, K., & Wainwright, J., 2002. Modelling the effects of hillslope-channel coupling on catchment hydrological response. Earth Surface Processes and Landforms. 27, 14411457. https://doi.org/10.1002/esp.440CrossRefGoogle Scholar
Millares-Valenzuela, A., Eekhout, J. P. C., Martínez-Salvador, A., García-Lorenzo, R., Pérez-Cutillas, P., & Conesa-García, C., 2022. Evaluation of sediment connectivity through physically-based erosion modeling of landscape factor at the event scale. CATENA. 213, 106165. https://doi.org/10.1016/j.catena.2022.106165CrossRefGoogle Scholar
Minasny, B., & McBratney, Alex.B., 2016. Digital soil mapping: A brief history and some lessons. Geoderma. 264, 301311. https://doi.org/10.1016/j.geoderma.2015.07.017CrossRefGoogle Scholar
Mulder, V. L., Lacoste, M., Richer-de-Forges, A. C., & Arrouays, D., 2016. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth. Science of the Total Environment. 573, 13521369. https://doi.org/10.1016/j.scitotenv.2016.07.066CrossRefGoogle ScholarPubMed
Müller, E. N., 2007. Scaling Approaches to the Modelling of Water, Sediment and Nutrient Fluxes within Semi-arid Landscapes, Jornada Basin, New Mexico. Logos-Verl, Berlin.Google Scholar
Mulligan, M., & Wainwright, J., 2013. Modelling and model building, In Wainwright, J., Mulligan, M. (eds.), Environmental Modelling. John Wiley & Sons, Ltd: Chichester, UK, 726. https://doi.org/10.1002/9781118351475.ch2CrossRefGoogle Scholar
Murray, A. B., & Paola, C., 1994. A cellular model of braided rivers. Nature. 371, 5457. https://doi.org/10.1038/371054a0CrossRefGoogle Scholar
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., Hough, R. L., Avery, L. M., Kuppel, S., Maneta, M. P., & Soulsby, C., 2020a. An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 1: Background and model description. Journal of Environmental Management. 270, 110903. https://doi.org/10.1016/j.jenvman.2020.110903CrossRefGoogle ScholarPubMed
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., Hough, R. L., Avery, L. M., Maneta, M. P., & Soulsby, C., 2020b. An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 2: Application to a small agricultural catchment. Journal of Environmental Management. 270, 110905. https://doi.org/10.1016/j.jenvman.2020.110905CrossRefGoogle ScholarPubMed
Newman, B. D., Wilcox, B. P., Archer, S. R., Breshears, D. D., Dahm, C. N., Duffy, C. J., McDowell, N. G., Phillips, F. M., Scanlon, B. R., & Vivoni, E. R., 2006. Ecohydrology of water-limited environments: A scientific vision: Opinion. Water Resources Research. 42. https://doi.org/10.1029/2005WR004141CrossRefGoogle Scholar
Nunes, J. P., Wainwright, J., Bielders, C. L., Darboux, F., Fiener, P., Finger, D., Turnbull, L., & Team, C. W. T.-T., 2018. Better models are more effectively connected models. Earth Surface Processes and Landforms. 43, 13551360. https://doi.org/10.1002/esp.4323Google Scholar
Oreskes, N., Shrader-Frechette, K., & Belitz, K., 1994. Verification, validation, and confirmation of numerical models in the earth sciences. Science. 263, 641646. https://doi.org/10.1126/science.263.5147.641CrossRefGoogle ScholarPubMed
Özgen, I., Teuber, K., Simons, F., Liang, D., & Hinkelmann, R., 2015. Upscaling the shallow water model with a novel roughness formulation. Environmental Earth Sciences. 74, 73717386. https://doi.org/10.1007/s12665-015-4726-7CrossRefGoogle Scholar
Parsons, A. J., Abrahams, A. D., & Wainwright, J., 1994. On determining resistance to interrill overland flow. Water Resources Research. 30, 35153521. https://doi.org/10.1029/94WR02176CrossRefGoogle Scholar
Parsons, A. J., Wainwright, J., Abrahams, A. D., & Simanton, J. R., 1997. Distributed dynamic modelling of interrill overland flow. Hydrological Processes. 11, 18331859. https://doi.org/10.1002/(SICI)1099-1085(199711)11:14<1833::AID-HYP499>3.0.CO;2-73.0.CO;2-7>CrossRefGoogle Scholar
Passalacqua, P., 2017. The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology. 277, 5062. https://doi.org/10.1016/j.geomorph.2016.04.001CrossRefGoogle Scholar
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode, C. A., Crosby, C., et al. 2015. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Science Reviews. 148, 174193. https://doi.org/10.1016/j.earscirev.2015.05.012CrossRefGoogle Scholar
Paton, E., & Haacke, N., 2021. Merging patterns and processes of diffuse pollution in urban watersheds: A connectivity assessment. WIREs Water. 8. https://doi.org/10.1002/wat2.1525CrossRefGoogle Scholar
Peñuela, A., Javaux, M., & Bielders, C. L., 2015. How do slope and surface roughness affect plot-scale overland flow connectivity? Journal of Hydrology. 528, 192205. https://doi.org/10.1016/j.jhydrol.2015.06.031CrossRefGoogle Scholar
Peñuela, A., Javaux, M., & Bielders, C. L., 2013. Scale effect on overland flow connectivity at the plot scale. Hydrology and Earth System Sciences. 17, 87101. https://doi.org/10.5194/hess-17-87-2013CrossRefGoogle Scholar
Poblete, D., Arevalo, J., Nicolis, O., & Figueroa, F., 2020. Optimization of hydrologic response units (HRUs) using gridded meteorological data and spatially varying parameters. Water. 12, 3558. https://doi.org/10.3390/w12123558CrossRefGoogle Scholar
Pöppl, R. E., & Parsons, A. J., 2018. The geomorphic cell: A basis for studying connectivity: The geomorphic cell. Earth Surface Processes and Landforms. 43, 11551159. https://doi.org/10.1002/esp.4300CrossRefGoogle Scholar
Poole, G., Stanford, J., Running, S., Frissell, C., Woessner, W., & Ellis, B., 2004. A patch hierarchy approach to modeling surface and subsurface hydrology in complex flood-plain environments. Earth Surface Processes and Landforms. 29, 12591274. https://doi.org/10.1002/esp.1091CrossRefGoogle Scholar
Poole, G. C., O’Daniel, S. J., Jones, K. L., Woessner, W. W., Bernhardt, E. S., Helton, A. M., Stanford, J. A., Boer, B. R., & Beechie, T. J., 2008. Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications. 24, 10181031. https://doi.org/10.1002/rra.1099CrossRefGoogle Scholar
Porter, K. D. H., Reaney, S. M., Quilliam, R. S., Burgess, C., & Oliver, D. M., 2017. Predicting diffuse microbial pollution risk across catchments: The performance of SCIMAP and recommendations for future development. Science of the Total Environment. 609, 456465. https://doi.org/10.1016/j.scitotenv.2017.07.186CrossRefGoogle ScholarPubMed
Reaney, S. M., 2008. The use of agent based modelling techniques in hydrology: Determining the spatial and temporal origin of channel flow in semi-arid catchments. Earth Surface Processes and Landforms. 33, 317327. https://doi.org/10.1002/esp.1540CrossRefGoogle Scholar
Reaney, S. M., Bracken, L. J., & Kirkby, M. J., 2014. The importance of surface controls on overland flow connectivity in semi-arid environments: results from a numerical experimental approach: Surface controls on overland flow connectivity. Hydrological Processes. 28, 21162128. https://doi.org/10.1002/hyp.9769CrossRefGoogle Scholar
Reaney, S. M., Bracken, L. J., & Kirkby, M. J., 2007. Use of the connectivity of runoff model (CRUM) to investigate the influence of storm characteristics on runoff generation and connectivity in semi-arid areas. Hydrological Processes. 21, 894906. https://doi.org/10.1002/hyp.6281CrossRefGoogle Scholar
Reaney, S. M., Lane, S. N., Heathwaite, A. L., & Dugdale, L. J., 2011. Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecological Modelling. 222, 10161029. https://doi.org/10.1016/j.ecolmodel.2010.08.022CrossRefGoogle Scholar
Refsgaard, J. C., Højberg, A. L., He, X., Hansen, A. L., Rasmussen, S. H., & Stisen, S., 2016. Where are the limits of model predictive capabilities? Representative elementary scale – RES. Hydrological Processes. 30, 49564965. https://doi.org/10.1002/hyp.11029CrossRefGoogle Scholar
Renard, P., & Allard, D., 2013. Connectivity metrics for subsurface flow and transport. Advances in Water Resources. 51, 168196. https://doi.org/10.1016/j.advwatres.2011.12.001CrossRefGoogle Scholar
Reulier, R., Delahaye, D., Caillault, S., Viel, V., Douvinet, J., & Bensaid, A., 2016. Mesurer l’impact des entités linéaires paysagères sur les dynamiques spatiales du ruissellement : une approche par simulation multi-agents. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.27768CrossRefGoogle Scholar
Reulier, R., Delahaye, D., & Viel, V., 2019. Agricultural landscape evolution and structural connectivity to the river for matter flux, a multi-agents simulation approach. CATENA. 174, 524535. https://doi.org/10.1016/j.catena.2018.11.036CrossRefGoogle Scholar
Reulier, R., Delahaye, D., Viel, V., & Davidson, R., 2017. Connectivité hydro-sédimentaire dans un petit bassin versant agricole du nord-ouest de la France : de l’expertise de terrain à la modélisation par Système Multi-Agent. Géomorphologie : Relief, Processus, Environnement. 23, 327340. https://doi.org/10.4000/geomorphologie.11857CrossRefGoogle Scholar
Schmitt, R. J. P., Bizzi, S., & Castelletti, A., 2016. Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity: Tracking multiple sediment cascades at river network scale. Water Resources Research. 52, 39413965. https://doi.org/10.1002/2015WR018097CrossRefGoogle Scholar
Singh, M., Tandon, S. K., & Sinha, R., 2017. Assessment of connectivity in a water-stressed wetland (Kaabar Tal) of Kosi-Gandak interfan, north Bihar Plains, India: Connectivity response units in a wetland. Earth Surface Processes and Landforms. 42, 19821996. https://doi.org/10.1002/esp.4156CrossRefGoogle Scholar
Skidmore, E. L., 1997. Comment on chain method for measuring soil roughness. Soil Science Society of America Journal. 61, 15321533. https://doi.org/10.2136/sssaj1997.03615995006100050034xCrossRefGoogle Scholar
Smith, M. W., 2014. Roughness in the earth sciences. Earth-Science Reviews. 136, 202225. https://doi.org/10.1016/j.earscirev.2014.05.016CrossRefGoogle Scholar
Smith, R., 1991. The application of cellular automata to the erosion of landforms. Earth Surface Processes and Landforms. 16, 273281. https://doi.org/10.1002/esp.3290160307CrossRefGoogle Scholar
Spence, C., & Hosler, J., 2007. Representation of stores along drainage networks in heterogenous landscapes for runoff modelling. Journal of Hydrology. 347, 474486. https://doi.org/10.1016/j.jhydrol.2007.09.035CrossRefGoogle Scholar
Suppes, P. 1962. Models of data. In Nagel, E., Suppes, P., Tarski, A. (eds) Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, 252261. Stanford University Press, Stanford, CA.Google Scholar
Tangi, M., Schmitt, R., Bizzi, S., & Castelletti, A., 2019. The CASCADE toolbox for analyzing river sediment connectivity and management. Environmental Modelling & Software. 119, 400406. https://doi.org/10.1016/j.envsoft.2019.07.008CrossRefGoogle Scholar
Thomsen, L. M., Baartman, J. E. M., Barneveld, R. J., Starkloff, T., & Stolte, J., 2015. Soil surface roughness: Comparing old and new measuring methods and application in a soil erosion model. SOIL. 1, 399410. https://doi.org/10.5194/soil-1-399-2015CrossRefGoogle Scholar
Tromp-van Meerveld, H. J., & McDonnell, J. J., 2006. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis: Threshold flow relations, 2. Water Resources Research. 42. https://doi.org/10.1029/2004WR003800CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Pöppl, R., Tockner, K., Bracken, L. J., et al. 2018. Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science. 3, 11. https://doi.org/10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Turnbull, L., & Wainwright, J., 2019. From structure to function: Understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecological Indicators. 98, 608618. https://doi.org/10.1016/j.ecolind.2018.11.039CrossRefGoogle Scholar
Voutsa, V., Battaglia, D., Bracken, L. J., Brovelli, A., Costescu, J., Díaz Muñoz, M., Fath, B. et al., 2021. Two classes of functional connectivity in dynamical processes in networks. The Journal of the Royal Society Interface. 18, 20210486. https://doi.org/10.1098/rsif.2021.0486CrossRefGoogle ScholarPubMed
Wainwright, J., 2015. Stability and instability in Mediterranean landscapes: A geoarchaeological perspective, In Dykes, A. P., Mulligan, M., Wainwright, J. (eds.), Monitoring and Modelling Dynamic Environments. Wiley, Chichester, UK, 22.Google Scholar
Wainwright, J., 2008. Can modelling enable us to understand the rôle of humans in landscape evolution? Geoforum. 39, 659674. https://doi.org/10.1016/j.geoforum.2006.09.011CrossRefGoogle Scholar
Wainwright, J., 1996a. Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. CATENA. 26, 2747. https://doi.org/10.1016/0341-8162(95)00033-XCrossRefGoogle Scholar
Wainwright, J., 1996b. Hillslope response to extreme storm events: The example of the Vaison-la-Romaine event, In Anderson, M. G., Brooks, S. M. (eds.), Advances in Hillslope Processes. John Wiley and Sons, Chichester, 9971026.Google Scholar
Wainwright, J., 1994. Erosion of archaeological sites: Results and implications of a site simulation model. Geoarchaeology. 9, 173201. https://doi.org/10.1002/gea.3340090302CrossRefGoogle Scholar
Wainwright, J., & Millington, J. D. A., 2010. Mind, the gap in landscape-evolution modelling. Earth Surface Processes and Landforms. 35, 842855. https://doi.org/10.1002/esp.2008CrossRefGoogle Scholar
Wainwright, J., & Parsons, A. J., 2002. The effect of temporal variations in rainfall on scale dependency in runoff coefficients: Temporal variations in rainfall. Water Resources Research. 38, 7-1–7-10. https://doi.org/10.1029/2000WR000188CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E., 2011. Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology. 126, 387404. https://doi.org/10.1016/j.geomorph.2010.07.027CrossRefGoogle Scholar
Western, A. W., & Blöschl, G., 1999. On the spatial scaling of soil moisture. Journal of Hydrology. 217, 203224. https://doi.org/10.1016/S0022-1694(98)00232-7CrossRefGoogle Scholar
Winsberg, E., 2018. Philosophy and Climate Science, 1st ed. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108164290CrossRefGoogle Scholar
Wood, E. F., Sivapalan, M., Beven, K., & Band, L., 1988. Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology. 102, 2947. https://doi.org/10.1016/0022-1694(88)90090-XCrossRefGoogle Scholar
Xu, H., van der Steeg, S., Sullivan, J., Shelley, D., Cely, J. E., Viparelli, E., Lakshmi, V., & Torres, R., 2020. Intermittent channel systems of a low‐relief, low‐gradient floodplain: Comparison of automatic extraction methods. Water Resources Research. 56. https://doi.org/10.1029/2020WR027603CrossRefGoogle Scholar
Zhang, X., Drake, N. A., & Wainwright, J., 2013. Spatial modelling and scaling issues, In Wainwright, J., Mulligan, M. (eds.), Environmental Modelling. John Wiley & Sons, Ltd, Chichester, UK, 6990. https://doi.org/10.1002/9781118351475.ch5CrossRefGoogle Scholar
Zhang, X., Drake, N. A., Wainwright, J., & Mulligan, M., 1999. Comparison of slope estimates from low resolution DEMs: Scaling issues and a fractal method for their solution. Earth Surface Processes and Landforms. 24, 763779. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<763::AID-ESP9>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle Scholar
Zhang, Z., Chen, X., Cheng, Q., Li, S., Yue, F., Peng, T., Waldron, S., Oliver, D. M., & Soulsby, C., 2020. Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone. Science of the Total Environment. 732, 138902. https://doi.org/10.1016/j.scitotenv.2020.138902CrossRefGoogle ScholarPubMed
Ziegler, A. D., Giambelluca, T. W., Plondke, D., Leisz, S., Tran, L. T., Fox, J., Nullet, M. A., Vogler, J. B., Minh Troung, D., & Tran Duc, V., 2007. Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: Buffering of Hortonian overland flow. Journal of Hydrology. 337, 5267. https://doi.org/10.1016/j.jhydrol.2007.01.031CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×